
CLARIN-D User Guide
Written by CLARIN-D AP 5

CLARIN-D User Guide
Written by CLARIN-D AP 5

Version: 1.0.1 (also available as a PDF file [http://media.dwds.de/clarin/userguide/userguide-1.0.1.pdf])

Publication date Publication date: 2012-12-19

Abstract

Der CLARIN-D User Guide ist ein praktischer Leitfaden für die Anpassung und Integration existierender
Sprachressourcen in die CLARIN-D-Infrastruktur. Er behandelt in seinem ersten Teil grundlegende Themen
und Modellierungsprinzipien, die auf alle Arten von linguistischen Ressourcen und Werkzeugen anwendbar sind
(Datenkategorien, Metadaten, Annotationen, rechtliche Aspekte, Qualitätsmanagement). Im zweiten Teil des User
Guides werden ressourcenspezifische Eigenschaften der Infrastruktur dargestellt (Korpora, lexikalische Ressourcen,
linguistische Werkzeuge und deren Verknüpfung). Hierbei wird besonderes Augenmerk auf die Beschreibung
technischer Spezifika gelegt.

This user guide serves as a compehensive overview on the CLARIN-D infrastructure. It describes prerequites for
and methods of integrating linguistic tools and resources. Part I, “Basic concepts” provides readers with background
information and fundamental principles of the CLARIN-D infrastrucure that apply for all types of linguistic resources
and tools. Part II, “Linguistic resources and tools” covers specific issues for a broad range of resources and tools with
strong emphasis on best practices for the technical aspects of their integration and interoperation.

Licensed under Creative Commons, CC BY-ND 3.0 DE [http://creativecommons.org/licenses/by-nd/3.0/de/]

http://media.dwds.de/clarin/userguide/userguide-1.0.1.pdf
http://media.dwds.de/clarin/userguide/userguide-1.0.1.pdf
http://creativecommons.org/licenses/by-nd/3.0/de/
http://creativecommons.org/licenses/by-nd/3.0/de/

iii

Table of Contents
Introduction and background ... iv

1. About this book .. v
2. Who should read this book? .. v
3. How to use this book ... vi
4. Release history .. vi

I. Basic concepts ... 1
1. Concepts and data categories ... 4

1. Data Categories and Data Category Registries ... 4
2. ISOcat, a Data Category Registry ... 5

2. Metadata .. 13
1. Managing and Accessing Data .. 13
2. Objects, Collections, Granularity .. 14
3. Types of Resources and Metadata Components .. 16
4. Lifecycle Management ... 17
5. Existing MD sets .. 17
6. The Component Metadata Initiative (CMDI) ... 19
7. Aggregation .. 26
8. Recommendations ... 29

3. Resource annotations ... 30
1. Aspects of annotations ... 31
2. Exchange and combination of annotations ... 36
3. Recommendations ... 41

4. Access to resources and tools – technical and legal issues 43
1. Single Sign-on access to the CLARIN-D infrastructure 43
2. Legal Issues .. 45

5. Quality assurance .. 46
1. Aspects of the quality of resources ... 46
2. Recommendations ... 47

II. Linguistic resources and tools .. 49
6. Types of resources .. 51

1. General recommendations .. 51
2. Text Corpora .. 52
3. Multimodal corpora ... 61
4. Lexical resources .. 65

7. Linguistic tools ... 73
1. Hierarchies of linguistic tools ... 73
2. Automatic and manual analysis tools ... 75
3. Technical issues in linguistic tool management ... 77
4. Automatic segmentation and annotation tools ... 77
5. Manual annotation and analysis tools .. 92
6. Multimedia tools ... 93
7. Recommendations for CLARIN-D tool designers 95

8. Web services: Accessing and using linguistic tools .. 96
1. Web Services .. 96
2. Service-oriented architectures ... 98
3. WebLicht – A service-oriented architecture for linguistic resources and
tools ... 98
4. WebLicht usage scenarios .. 102
5. Integrating existing linguistic tools into WebLicht 114

Bibliography ... 117

iv

Introduction and background
Axel Herold, Lothar Lemnitzer, BBAW Berlin

The BMBF funded project CLARIN-D will develop a digital infrastructure for language-
centered research in the humanities and social sciences. The main function of the CLARIN-D
service centres will be to provide relevant, useful data and tools in an integrated, interoperable
and scalable way. CLARIN-D will roll this infrastructure out in close collaboration with expert
scholars in the humanities and social sciences, to ensure that it meets the needs of users in a
systematic and easily accessible way.

CLARIN-D is building on the achievements of the preparatory phase of the European CLARIN
initiative [http://www.clarin.eu] as well as CLARIN-D's Germany-specific predecessor project
D-SPIN [http://d-spin.org]. These previous projects have developed standards to be met by
the CLARIN-D services centres, technical standards and solutions for key functions, a set of
requirements which participants have to provide, as well as plans for the sustainable provision
of tools and data and their long-term archiving.

The outcomes of these projects which are relevant and accessible to the user of the CLARIN-
D infrastructure are:

• WebLicht, an environment for the orchestration of linguistic tools and the sequential
annotation of primary data. If you want to learn more about Weblicht, please consult
Section 3, “WebLicht – A service-oriented architecture for linguistic resources and tools”
or log in to WebLicht [https://weblicht.sfs.uni-tuebingen.de/] directly if you signed up for
an account.

• The resource inventory of the Virtual Language Observatory [http://catalog.clarin.eu/ds/
vlo/] (VLO). You can use the VLO to browse and search through many language resources
and check their availibility and other metadata.

• The CLARIN-D helpdesks [http://de.clarin.eu/en/training-helpdesk.html]. We will refer you
to these helpdesks for topics and issues which are too specific for this general user guide.
There are always questions which will remain open. If you have one, please do not hesitate
to contact the most appropriate helpdesk.

One of the major tasks of CLARIN-D will be the maintainance and hosting of resources and
tools, ours as well as yours. Indeed, the backbone of the CLARIN-D infrastructure is a network
of resource centres which offer services to this end (e.g. repostories and persistent identifiers
for resources and tools, expertise in language technology standards and questions regarding
interoperability. If you want to contribute to CLARIN-D with your resource(s) and/or tool(s),
it is a good idea to get in touch with the CLARIN-D center which ist nearest to your site. You
will find a list of CLARIN-D service centres [http://de.clarin.eu/en/clarin-d-centres.html] on
the CLARIN-D website.

If you want to become an active part of the wider CLARIN-D community because you feel
that language resource and tools is something which is or could be relevant for your research,
you might consider joining one of the discipline-specific working groups [http://de.clarin.eu/
en/discipline-specific-working-groups.html] (“Facharbeitsgruppen”, F-AG). You are always
welcome to join in.

CLARIN-D and the European CLARIN consortium also organize regular tutorials and
workshops that allow you to learn more about the CLARIN-D infrastructure and to get hands-
on training using it.

http://www.clarin.eu
http://www.clarin.eu
http://www.clarin.eu
http://d-spin.org
http://d-spin.org
https://weblicht.sfs.uni-tuebingen.de/
https://weblicht.sfs.uni-tuebingen.de/
http://catalog.clarin.eu/ds/vlo/
http://catalog.clarin.eu/ds/vlo/
http://catalog.clarin.eu/ds/vlo/
http://de.clarin.eu/en/training-helpdesk.html
http://de.clarin.eu/en/training-helpdesk.html
http://de.clarin.eu/en/clarin-d-centres.html
http://de.clarin.eu/en/clarin-d-centres.html
http://de.clarin.eu/en/discipline-specific-working-groups.html
http://de.clarin.eu/en/discipline-specific-working-groups.html
http://de.clarin.eu/en/discipline-specific-working-groups.html

Introduction and background

v

1. About this book
This user guide serves as a compehensive overview on the CLARIN-D infrastructure. It
describes prerequites for and methods of integrating linguistic tools and resources.

The user guide is on the highest level divided in two parts. The first part introduces basic
concept and practices of the CLARIN-D infrastrucure at large. If you are new to CLARIN-
D, you should read this part first. All types or resources to be integrated are affected by the
policies which are outlined in this part of the user guide. Here, we cover the issues related to
concepts and data categories, we introduce meta-data in general and the Component Metadata
Infrastructure (CMDI) in particular, chapter 4 deals with (mainly linguistic) annotation of
primary data, chapter 5 introduces issues of quality and chapter 6 serves as a short introduction
on accesibility of resources and rights management.

The second part covers issues which are specific to particular types of resources (e.g. corpora,
lexical resources) or to particular tools (e.g. taggers, parsers). It also presents the CLARIN-D
way of orchestrating tools in tool chains.

CLARIN-D is an evolving project and the descriptions provided in this user guide cannot be
considered as definite and unchangeeable. Research requirements as well as new technical
developments may well call for new stadndards and practices and of changes in existing ones.
We therefore consider this document to be a living on which will be subject to changes in the
future. You will find this document as an electonic one with a version number attached to it. A
version tracker will keep you up-to date on latest changes to this document.

Each section of this user guide is concluded by a list of recommendations that briefly
summarize the current technical prerequisites for tool and resource integration with respect to
the publication date of the user guide.

A central glossary for CLARIN spefic terms [http://www.clarin.eu/external/index.php?
page=glossary.] has been collected on the CLARIN EU website [http://www.clarin.eu/] and
provides pointers to most of the technologies that are mentioned throughout this user guide.

2. Who should read this book?
Researchers from all disciplines of the humanities will find help and guidance for resource and
tool integration. The user guide introduces and motivates the CLARIN-D policy towards these
issues. It also provides pointers to existing documentation of common practice in the field.

The procedures described in this user guide also provide developers with methods and metrics
to evaluate linguistic tools and resources from a purely technical point of view. Evaluation from
a developer's perspective tries to answer the question how difficult or expensive it is to integrate
external resources into the CLARIN-D infrastructure. For resources that are developed from
scratch this part will also serve as a guideline for minimizing the costs for adaptation and
finally integration into the CLARIN-D infrastructure. A major aim of this user guide will
be in particular to support developers in achieving interoperability with data formats that are
endorsed by CLARIN-D. Besides the two intended audiences sketched above, the editors hope
that this user guide might also be of value for researchers external to the national CLARIN
consortia, e.g. for funding bodies and their reviewers.

http://www.clarin.eu/external/index.php?page=glossary.
http://www.clarin.eu/external/index.php?page=glossary.
http://www.clarin.eu/external/index.php?page=glossary.
http://www.clarin.eu/
http://www.clarin.eu/

Introduction and background

vi

3. How to use this book
If you are new to CLARIN-D, you should at least skim through the chapters of the first part. If
you are already experienced in sharing resources within a community, some of the issues will
sound familiar to you. You should nevertheless learn about the policy and recommendations of
CLARIN-D (so you should at least check the recommendations at the end of each section).

If you want to provide and share a particular resource, you might want to move straight ahead
to the relevant section of Chapter 6, Types of resources. The same holds for a particular tool –
move on to Chapter 7, Linguistic tools and the relevant sections. Even more relevant in this case
will be Chapter 8, Web services: Accessing and using linguistic tools, which explains how tools
of different sorts are made interoperable. This chapter is also for you if you look for a solution
to the linguistic analysis of your (textual) primary data, i.e. a single document or a corpus.

As the audience of this user guide is diverse we mark sections aiming at specific readers
explicitly:

Technical details

These sections contain information aimed specifically at technical staff such
as sofware engineers and developers. Here you will also often find pointers to
technical specifications of formats and protocols.

Tips and high level summaries

These sections summarize the most important points discussed throughout the user
guide and provide a very compressed view on a specific topic.

Additional information

These sections contain valuable background information many of our readers will
already be familiar with.

4. Release history
1.0.1 (2012-12-19, @rev208)

minor typographic corrections, added PDF version

1.0.0 (2012-12-14, @rev205)
first release

Part I. Basic concepts

2

Table of Contents
1. Concepts and data categories ... 4

1. Data Categories and Data Category Registries ... 4
2. ISOcat, a Data Category Registry ... 5

2.1. Data categories in ISOcat ... 6
2.2. Data category types: simple, complex and container DCs 6
2.3. Specifying a data category: administrative, descriptive and linguistic
part .. 8
2.4. Ways how to use the ISOcat data category registry 9
2.5. RELcat, a relation registry .. 11

2. Metadata .. 13
1. Managing and Accessing Data .. 13
2. Objects, Collections, Granularity .. 14
3. Types of Resources and Metadata Components ... 16
4. Lifecycle Management ... 17
5. Existing MD sets .. 17

5.1. Dublin Core Metadata Initiative (DCMI) .. 18
5.2. ISLE Metadata Initiative ... 18
5.3. Open Language Archive Community (OLAC) 18
5.4. CHAT ... 18
5.5. Text Encoding Initiative (TEI) ... 19
5.6. Component Metadata Initiative (CMDI) ... 19

6. The Component Metadata Initiative (CMDI) ... 19
6.1. What is it? ... 19
6.2. Why yet another metadata format? .. 20
6.3. The CMDI model .. 20
6.4. Explicit semantics ... 23
6.5. Procedure .. 24
6.6. Profile and component adaptation .. 25
6.7. Preferred components and profiles ... 26
6.8. Converting existing metadata to CMDI .. 26

7. Aggregation .. 26
7.1. Metadata Harvesting ... 27
7.2. Metadata gathering and searching: the Virtual Language Observatory
(VLO) .. 27

8. Recommendations ... 29
3. Resource annotations ... 30

1. Aspects of annotations ... 31
1.1. Inline vs. stand-off annotations .. 31
1.2. Multi-layer annotation ... 34
1.3. Relations between annotation types .. 35

2. Exchange and combination of annotations ... 36
2.1. Representing and exchanging complete annotations: getting independent
of a specific representation format ... 36
2.2. Introduction and monitoring of data categories: relating specific tagsets
... 40
2.3. Handling different concepts: issues in transferring annotation schemes 41

3. Recommendations ... 41
4. Access to resources and tools – technical and legal issues .. 43

1. Single Sign-on access to the CLARIN-D infrastructure 43
1.1. Gaining access to a resource ... 44

Basic concepts

3

1.2. Granting access to a resources ... 44
1.3. Technical details of the single sign-on infrastructure 44

2. Legal Issues .. 45
5. Quality assurance .. 46

1. Aspects of the quality of resources ... 46
1.1. Well-formedness and schema compliance ... 46
1.2. Adequacy and consistency ... 46
1.3. Metadata ... 47

2. Recommendations ... 47

4

Chapter 1. Concepts and data
categories

Kerstin Eckart, Universität Stuttgart
A distributed infrastructure, such as provided by CLARIN-D, which aims at covering
heterogenous language resources and tools, has to deal with the use of concepts which are
similar but not identical when used by different stakeholders. This means that the ranges which
these concepts cover overlap but they are not co-extensive. To complicate matters, identical
terms might refer to different concepts if used by different parties, leading on the one hand to
polysemy of terms, and, on the other hand, to synonymy. Both are not desirable but are not
avoidable either in such a broad domain.

Explicit description of key concepts and of terms which signify these concepts is therefore vital
for the success of an endeavour such as building a comprehensive infrastructure of language
resources and tools. It is a keystone for the interoperability of language resources and tools.
It is also necessary to make explicit the relations between the used concepts (e.g. synonymy,
generalization / specialization).

A preliminary step to reach this goal is to collect concepts and notions which are used by the
stakeholders. A further step is to provide definitions for these concepts and to link them to
terms which are commonly used in the communities. It will also be necessary to keep track of
concepts which emerge in course of the further development of the infrastructure.

That means that terminology management is a task which will never be finished. As an
ongoing task which involves many stakeholders in the field it calls for tools which facilitate
the description of categories and concepts and the transparent use of them when describing
primary data (through metadata) as well as linguistic annotations and their descriptions.

In this chapter we introduce a Data Category Registry (DCR) to keep track of existing and
new concepts, and discuss ISOcat [http://www.isocat.org/], the Data Category Registry utilized
within CLARIN-D, in detail and mainly from a (technical) users perspective.

1. Data Categories and Data Category
Registries

Descriptive terms, that signify linguistic concepts, are used in the description of resources,
e.g. linguistic tools or linguistically annotated data. To give a simple example: if a corpus is
described by a set of metadata, one important information to be conveyed to the prospective
user is the object language(s) which this corpus covers. This information can be expressed in
different manners, e.g. by using the name of the object language(s) in the language in which
the metadata are provided:

Example 1.1. Unformalized data category value

Language: German

or by using a so-called language code, such as the ones provided by [ISO 639-3:2007]. Also the
name of the descriptive category label itself may vary between “language”, “language name”,
“Sprache”, “langue”, etc.:

http://www.isocat.org/
http://www.isocat.org/

Concepts and data categories

5

Example 1.2. Formalized data category value

Language: deu

Sprache: deu

The point is that all the above descriptions have the same meaning: the object language of this
resource is German. The statement has two parts: an attribute and a value that is assigned to
this attribute. Both the attribute and its value, as well as many other attributes and values, are
called data categories. To build an infrastructure of interoperable resources, it is necessary to
keep track of all these categories in a category registry and to make an explicit reference to
these categories by referring to them by unique category identifiers. This suffices for all the
data categories which are already available. For those data categories which are used by a data
provider and which are not yet registered, the data provider should be responsible to provide a
new entry to the registry, providing information which is sufficient for other users to understand
the meaning of this category.

For our example above, the fact that “Sprache” and “Language” mean the same in the given
context can be expressed by providing a reference to a data category by an identifier which is
the same in both cases. Concerning the value of this label, it is always preferable to resort to
an existing standard, i.e., [ISO 639-3:2007] in that case.

This method of applying category names should also be used for information about the labels
used for the (linguistic) annotation of primary data, e.g. to linguistic categories which give
information about the part-of-speech of a linguistic unit which is part of the resource. Explicit
reference to a data category and its description is helpful also in this case. To give a simple
example: according to a linguistic framework which guides the part-of-speech annotation of a
resource, the category noun might either refer to a concept which contains common nouns only
or to a concept which contains both common nouns and proper nouns.

Terminology management in the domain of language resources and linguistic annotations is
covered by the ISO standard [ISO 12620:2009]. See also the section on DCR on the CLARIN
standards guidance web page [http://clarin.ids-mannheim.de/standards/] for information on
the ISO document and relations to other standards. It is CLARIN-D policy to follow [ISO
12620:2009]. The standard is embodied by the terminology management platform ISOcat
[http://www.isocat.org/]. It is CLARIN-D policy to organize terminology management through
this platform.

2. ISOcat, a Data Category Registry
ISOcat is the reference implementation of ISO standard 12620 mentioned above. Its mission
is defined as follows:

ISO 12620 provides a framework for defining data categories compliant
with the ISO/IEC 11179 family of standards. According to this model,
each data category is assigned a unique administrative identifier, together
with information on the status or decision-making process associated with
the data category. In addition, data category specifications in the DCR
contain linguistic descriptions, such as data category definitions, statements of
associated value domains, and examples. Data category specifications can be
associated with a variety of data element names and with language-specific
versions of definitions, names, value domains and other attributes.

http://clarin.ids-mannheim.de/standards/
http://clarin.ids-mannheim.de/standards/
http://clarin.ids-mannheim.de/standards/
http://www.isocat.org/
http://www.isocat.org/

Concepts and data categories

6

The use of ISOcat is endorsed by CLARIN-D. It is a core facility for the terminology
management in the CLARIN-D infrastructure. This is also planned for its upcoming spin-offs
RELcat and SCHEMAcat. In the following we give a description of some features of ISOcat.
The presentation is largely based on a tutorial by Menzo Windhouwer (MPI, Nijmegen) and
Ineke Schuurman (KU Leuven and Univerity of Utrecht). While the first sections describe
some details from the technical user's perspective, the last section sums up ways how to use
ISOcat. For more information, help pages and tutorial material see the ISOcat manual [http://
www.isocat.org/files/manual.html] and http://www.clarin.eu/faq/3507

2.1. Data categories in ISOcat
In the context of ISOcat a data category (short: DC) is an elementary descriptor in a linguistic
structure or an annotation scheme. Its specification comprises three parts: an administrative
part for administration and identification of the DC, a descriptive part for documentation which
can also be written in various working languages and a linguistic part describing the conceptual
domain(s). The UML class diagramm of the data model for the specification can be found on
the ISOcat website [http://www.isocat.org/files/12620.html].

In the following we will give an example for a DC specification, but before we will have a look
at the different types of data categories differing by their conceptual domains. There are three
main types of DCs: complex, simple and container DCs.

2.2. Data category types: simple, complex and
container DCs

Simple DCs are atomic and can neither contain other DCs nor be assigned a value. For example,
to represent neuter, masculine and feminine (as possible values for grammatical gender) in
ISOcat, for each of them a simple DC is needed.

Complex DCs can be assigned a value and appear with three characteristics: open, closed and
constrained.

The values assigned to complex open DCs are arbitrary within a chosen data type e.g., the
complex open DC lemma can be assigned values of type string.

The values assigned to complex closed DCs are part of a closed vocabulary consisting of simple
DCs, e.g., grammatical gender would be a complex closed DC if the simple DCs feminine,
masculine and neuter are in its conceptual domain.

Values assigned to constrained DCs need to fulfill certain constraints, e.g., the complex
constrained DC email might restrict its values to strings containing an @ character.

Figure 1.1, “DC Types” provides an overview of the data category types.

http://www.isocat.org/files/manual.html
http://www.isocat.org/files/manual.html
http://www.isocat.org/files/manual.html
http://www.isocat.org/files/12620.html
http://www.isocat.org/files/12620.html
http://www.isocat.org/files/12620.html

Concepts and data categories

7

Figure 1.1. DC Types

Container DCs would in principle include other DCs (simple, complex and container). For
example, a container category lexicon might include another container lemma which again
includes the complex open DC writtenForm and the container lexicon might also include the
complex closed DC language. See Figure 1.2, “Examples for DCs of several types” where
container DCs are orange, complex closed DCs are green, complex open DCs are yellow and
simple DCs are white.

Figure 1.2. Examples for DCs of several types

Figure by Menzo Windhouwer

There is one restriction regarding recursion as it is not explicitly stored in ISOcat. Therefore,
complex DCs only take simple DCs or basic datatypes (e.g. string) as values (value-domain
relations up to depth one) and relations between container categories are not explicitly stored
in ISOcat.

Concepts and data categories

8

2.3. Specifying a data category: administrative,
descriptive and linguistic part

In the administrative part a DC is identified. It gets an identifier and a justification. It is also
assigned one of the types mentioned above.

The identifier is a name in camel case, i.e. all of its words are written in one joint character
sequence without spaces, starting each new word with a capital letter as in camelCase).
It has to start with an alphabetical character (firstPerson rather than 1stPerson), be
meaningful (no abbreviation) and written in English. So, for example, in describing the DC for
grammatical gender one could choose the identifier grammaticalGender. Nevertheless,
the identifier is not unique as a DC can be registered under the same “name” in more than
one thematic domain.

The unique identification for the DC is done by automatically assigning it a persistent identifier
(PID). This unique reference is guaranteed to be resolvable for coming decades. Usually the
PIDs of data categories in ISOcat look like the following URI, with a varying number at the
end for different categories:

Example 1.3. ISOcat PID

http://www.isocat.org/datcat/DC-1297

The justification explains why this DC is needed or where it is used. Its origin, e.g. the name
of the tag set or the piece of literature where this DC was described, can also be given.

In the descriptive part, the DC can be documented in various working languages, it is embedded
into one or more profiles and it is assigned a data element name.

The definitions in various languages should be more or less translations of each other, they
should be understandable, and they should not rely on other specific terminological items unless
those are defined elsewhere by another DC. In the latter case, one has to make sure that those
related definitions cover exactly the term that should be used in the new definition and that the
new definition references them explicitly. At least an English language section has to be present.
Each language section also includes the correct full name(s) related to the DC in the respective
language. On top of that, each DC should be defined to be as much reusable as possible, while
being still correct for the purpose of the author.

For example, in a particular tagset a personal pronoun might be “a pronoun referring to
persons”, but in general it often also refers to other entities (The cat has five kittens. She … The
table was very expensive but I like it very much.). Therefore, a more general definition would
help making the DC more easily reusable. This effect is increased even more, when keeping
the definition as neutral as possible, i.e., without reference to a specific language or project.
Definitions like “In English a personal pronoun …” or “In STTS a personal pronoun …” restrict
the usability of the DC. Information about the origin of a DC can be stated in the administrative
part. Nevertheless, the topmost constraint for the definition of the DC is to be valid for the
purpose of the author and then for as many other users as possible.

The DC is embedded into one or more profiles. Profiles are managed by so-called thematic
domain groups (short: TDG), i.e., formally established groups of users who assume a certain
responsibility for respective domains such as Metadata, Morphosyntax, Terminology, etc. TDGs

http://www.isocat.org/datcat/DC-1297

Concepts and data categories

9

can be proposed via the subcommittees of ISO/TC 37 (the technical commitee on Terminology
and other language and content resources).

The data element name is the place to include abbreviations or tags used for this DC. These
names do not have to be in English or even any other language, they are language independent.
Returning to the example of grammaticalGender: GEN or gramGender could be data element
names taken from an application-specific tagset, or a domain-specific XML schema.

In the linguistic part, complex DCs are assigned their conceptual domain(s).

In case of a complex open DC the base data type is specified and in case of a complex
constrained DC the base data type is selected and the constraints are expressed in a constraint
language, e.g. as an XML Schema regular expression or in Object Constraint Language. For
complex closed DCs the simple DCs that are possible values are selected. To give an example
for the conceptual domain of a complex closed DC, we go back to the DC grammaticalGender.
Here another important feature becomes evident: multiple conceptual domains can be assigned,
one for each profile and one for each object language respectively. For example with respect
to the profile for morphosyntax its conceptual domain can include a range of DCs, e.g.
feminine, masculine, neuter and commonGender. The language specific French conceptual
domain includes feminine and masculine.

2.4. Ways how to use the ISOcat data category
registry

The data category registry is useful for making (parts of) the semantics of resources explicit
and so gives insight where the same semantics are shared in different resources.

Therefore ISOcat can (and should) be used in different situations and for the following purposes

• to look up a data category, e.g. in a situation where you need to make the meaning of a
descriptor in your (meta)data or annotation explicit;

• to refer to an existing DC from a descriptor in your data

• to create a new data category, e.g. in a situation where you want to make the meaning of a
descriptor in your data explicit but no corresponding data category does exist;

• to negotiate with someone else who has already provided a data category, e.g. if you plan
to refer to a data category and you think the meaning of it should be changed (made more
general, more specific etc.) or the definition should be improved.

Looking up a DC:
The web interface provides a search engine where existing DCs can be searched for by
name, profile and description. Screencasts presenting how to search and inspect DCs in
the ISOcat web interface can be found at the ISOcat manual [http://www.isocat.org/files/
manual.html].

Usually when searching for a specific concept many DCs appear, so the profile
classification and the description sections of the resulting DCs usually provide a first
insight which category to choose. Sometimes many similar DCs may appear as well as DCs
containing vague or even ill-formed definitions. Therefore markings in different shape and
colour are visibly assigned to the DCs of the search result and state the correctness of the

http://www.isocat.org/files/manual.html
http://www.isocat.org/files/manual.html
http://www.isocat.org/files/manual.html

Concepts and data categories

10

specification from a technical point of view. As only DCs with a (green) check mark are in
principle qualified for standardization, those are the relevant candidates to be referred to.

As standardization of DCs by the ISO is a complex and therefore slow procedure one
often has to refer to non-standardized or not-yet-standardized DCs. As those may still be
changing at any time, one has to regularly check the referenced DCs for consistence with
the original purpose and eventually look for new ones. A CLARIN approach could also be
to select data categories, which can already be seen as de-facto-standardized DCs relevant
for CLARIN purposes, into a separate workspace in ISOcat.

Referencing an existing DC:
DCs relevant for a resource can be referenced by their PID and can be selected into a data
category selection. References to the DCs can be embedded in (the scheme of) the resource.
Collecting the references in a schema written in a specific schema language (Relax NG,
DTD, OWL, EBNF, XSD ...) is preferred, as putting it in the resource itself mostly means
to store the references redundantly as a single DC from an annotation (e.g. noun) usually
occurs many times in the resource. Example 1.4, “Part of a CMDI XSD specification” is a
fragment of an XSD specification of a CMDI meta data profile where an element named
Url is related to a respective DC in ISOcat:

Example 1.4. Part of a CMDI XSD specification

<xs:element
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:dcr="http://www.isocat.org/ns/dcr"
 name="Url"
 dcr:datcat="http://www.isocat.org/datcat/DC-2546"
 minOccurs="0"
 maxOccurs="unbounded" />

The XML format <tiger2/> [http://korpling.german.hu-berlin.de/tiger2/homepage/
index.html] that constitutes an XML serialization of [ISO 24615:2010] Language
resource management -- Syntactic annotation framework (SynAF) allows for references
of annotation feature and value elements to data categories of a DCR in the annotation
declaration of its corpus header. The following example is cited from [Romary et al. 2011]
and links the concepts of the part-of-speech feature and one of its possible values (personal
pronoun) to respective DCs in ISOcat:

Example 1.5. Referencing ISOcat DCs in <tiger2/>

<head xmlns:dcr="http://www.isocat.org/ns/dcr">
 <annotations>
 <feature
 xml:id="f2"
 name="pos"
 domain="t"
 dcrReference="http://www.isocat.org/datcat/DC-1345">
 <value
 xml:id="f2_1"
 name="PP"
 dcr:datcat="http://www.isocat.org/datcat/DC-1463"/>
 </feature>
 </annotations>
</head>

http://korpling.german.hu-berlin.de/tiger2/homepage/index.html
http://korpling.german.hu-berlin.de/tiger2/homepage/index.html
http://korpling.german.hu-berlin.de/tiger2/homepage/index.html

Concepts and data categories

11

Creating and registering a DC:
If a DC which is needed is still missing in ISOcat, a new one should be created according
to the above specification description. In the manual section of the ISOcat webpage [http://
www.isocat.org/files/manual.html] there is a screencast which also gives an introduction
to how to add a new data category.

Nevertheless, the specification scheme for a DC is complex, so the author has to edit
it with care, provide meaningful definitions and examples and not confuse the different
name categories (identifier, data element name, name sections for specific languages) or
specification sections (e.g. language section in descriptive part vs. linguistic section(s)
defining language-specific values for complex DCs).

Negotiating changes to a DC:
In case you find a data category which fits your descriptive needs nearly but not exactly,
you might consider, instead of creating a new DC from scratch, contacting the creator (or
“owner”) of this already existing DCs by the contact information in her or his user profile
in order to adapt the meaning and thereby the coverage of this DC. In other words, re-use
of a DC with slight modifications is preferable to inventing a new one. You can also share
your own DCs with other ISOcat users and make it possible that these DCs might become
recommended for CLARIN purposes.

2.5. RELcat, a relation registry
While referring to sets of DCs from different resources helps establishing relations between
concepts from the outside, relations between complex or container DCs in ISOcat are not
stored explicitly. Therefore the upcoming ISOcat spin-off RELcat is added as a relation registry
providing different relation types for the ISOcat DCs.

RELcat is a first prototype of a relation registry, see [Windhouwer 2012], where different
relations between ISOcat data categories, and also between data categories from different data
category registries can be stored.

Figure 1.3, “Examples for relations in RELcat” shows relations for the metadata categories
from the example in Section 1, “Data Categories and Data Category Registries”. Making use
of RELcat, both ISOcat data categories languageID and languageName could be related to the
Dublin Core [http://dublincore.org/] metadata element language.

Figure 1.3. Examples for relations in RELcat

Figure by Menzo Windhouwer from the LREC 2012 tutorial ISOcat in daily life

http://www.isocat.org/files/manual.html
http://www.isocat.org/files/manual.html
http://www.isocat.org/files/manual.html
http://dublincore.org/
http://dublincore.org/

Concepts and data categories

12

Figure 1.3, “Examples for relations in RELcat” also exemplifies the relation type
rel:subClassOf of the lowermost relation in the figure, which is utilized to indicate the
relation between the two non-equivalent data categories.

A core taxonomy of relationship types is provided for the relations in RELcat, see [Windhouwer
2012], nevertheless other existing vocabularies can be supported by adding their relation types
to their proper place in the taxonomy, thereby allowing for the inclusion of existing linguistic
knowledge bases. Moreover, generic queries can automatically take multiple relation types into
account.

This is also an important feature for the data categories themselves, as data categories which are
denoted as equivalent or almost equivalent by the relation type can be automatically included
into a query without the user having to know the names or number of the data categories in
the set of equivalent data categories.

As RELcat aims at being similarly flexible as ISOcat, the relations stored in RELcat can
reflect different views in parallel, e.g. of single users as well as of specific communities, see
[Windhouwer 2012].

13

Chapter 2. Metadata
Peter Wittenburg, Dieter van Uytvanck, MPI for Psycholinguistics
Nijmegen
The research domain is characterized by an enormous increase of the amount of data and the
complexity it covers, i.e. the type of implicit and explicit relations included, the heterogeneity
of formats and semantic domains, etc. This is also true in the domain of linguistics where
it is not the sheer volume only that is creating new challenges for management and access,
but it is the extremely growing number of files researchers are creating and using. A field
researcher documenting an endangered language for example easily has about 10.000 files on
his notebook, which need to be managed. Of course these files cover in particular raw data
(AV recordings, texts, etc.), but also many types of annotations, lexica, sketch grammars, notes
about various aspects of the language and the field trip, etc. On top of this there are several
versions of each work, often several presentation forms (for photos for example JPEG and
PNG, versions), extractions of fragments into new files and many other related forms.

It is a common experience that it is almost impossible to manage such a heap of data without
having a proper organization and naming scheme. Directory systems were used for many years,
but it turns out that these are not appropriate anymore, since they are not meant for sharing
and aggregation, do not include the many relations, do not express contextual knowledge, do
not support searches, etc.

Throughout this user guide we follow the definition of a digital object (DO) as introduced by
[Kahn/Wilensky 2006] when refering to different types of stored data as an abstract notion
of a digital work that is instantiated in some representational form and is associated with a
persistent identifier and a metadata description. We cannot claim thus that DOs are necessarily
files, since they could also be constructs in databases for example.

An abstract definition of metadata says “MD is data about data”. In this document we use the
term metadata as a keyword type of description of data objects. This concept of metadata is not
at all new, it was introduced as cards when big libraries were being built. These cards typically
combined creation with location information.

It is widely agreed – also across disciplines – that associating metadata with every DO is the only
alternative to be able to support management, sharing and access of data in the Internet domain.
Currently we see that this wide agreement is turned into strong requirements from funding
agencies: projects that include the creation of data need to come up with a data management
plan where it is described how the data created will be described, preserved and curated.
Metadata in this restricted sense can be defined as “structured information that describes,
explains, locates, or otherwise makes it easier to retrieve, use, or manage and information
resources” [NISO:2004].

1. Managing and Accessing Data
Metadata serves a number of important functions such as

• management of large data sets,

• associating access permissions with such data sets,

• discovery of digital objects and data sets,

• information about how to access data objects and sets,

Metadata

14

• assisting in re-using data objects by covering context and provenance information, and

• finding appropriate tools for a given data object

The discussion about metadata initiated by librarians mainly focused on the discovery function.
However, modern e-Research will require considering the other functions as equally important.
New functions such as profile matching will certainly be required.

Due to the range of different functions some experts speak about different types of metadata
descriptions such as structural MD, administrative MD, guide MD, preservation MD, technical
MD, process MD, descriptive MD, etc. These categories are not standardized, very much
dependent of the community using them and are subject to changes. In this document we will
not use these terms since we did not find them helpful.

We then need to address the question how we can describe the characteristics of data so that the
above-mentioned functions can be realized. The typical way is to define a number of meaningful
keywords that can describe the properties of a digital object, its context and provenance. A few
examples are typical keywords such as:

• creator: the name of the person(s) who created the object

• country: the country where an object was created

• content_language: the language an object is in

• date: the data when an object was created, modified, released, etc. – consider how this
example demonstrates that a keyword date is obviously not sufficient to allow correct
interpretations.

• actor: the person(s) actively involved in the data object

• genre: the genre the object can be categorized in

• source: an indicator of the lifecycle steps that led to this object – this is for example very
important when processing video streams. One needs to know which kinds of codecs have
been used, what kind of transformations have been applied etc. to do correct interpretations.

With each of these keywords some form of vocabulary or constraint can be associated. With
respect to the category “country” for example one may want to associate the official list of
nations as accepted by the UN. Such a list of possible values is called a controlled vocabulary.
With “date” one may want to associate a certain form to be entered such as the US way of
writing dates. Such syntactical limitations on the values are called constraints. However, for
many fields such as “genre” there are no widely agreed vocabularies, i.e. one can only indicate
a few typical options, but the list of values basically needs to be open.

2. Objects, Collections, Granularity
Digital Objects as introduced by [Kahn/Wilensky 2006] have a number of internal and external
properties. These properties are stored separate from the object and describe the DO as a whole,
which can excellently be done by metadata keywords. External properties can be described with
typical keywords (categories) as mentioned above. The internal properties typically indicate the
technical encoding scheme used, the structure of the object, the semantic used resp. covered,
etc. Keyword type of metadata is not meant to contain this information itself, but it should
point to an object that contains this information. It should be mentioned here that metadata
descriptions are restricted DOs itself, i.e. they need to have an identity that can be used to refer

Metadata

15

to them, but they are not described by metadata. Otherwise this would result in an unlimited
recursive system.

Some format suggestions for files such as CHAT [http://childes.psy.cmu.edu/] [MacWhinney
2000] and TEI [http://www.tei-c.org/] [TEI P5] suggest including so-called header information
in the file. The widely agreed convention is that metadata needs to be separate, since then it
can be used free of licenses, free of the large amounts of bytes the object itself may cover, to
be combined to form all sorts of virtual collections, to merge metadata from various sources,
or to update the metadata without changing the object. This is very important since updating
the header information in a file means creating a new object requiring an own identity and thus
version. Converters will allow extracting the header information from such files to generate
the metadata.

DOs are related in many different ways as a whole or amongst its fragments. Here we only
discuss examples where DOs are related as a whole. Typical examples are: the DO is a new
version of an older one, the DO is a different presentation version, the DO is part of a
series of DOs that was created at the same time and location, the DOs are about the same
content_language, the DOs include the same actors, and there are many more possibilities
of relations users want to express. Metadata systems should allow the creator, manager and
end-user to form so-called virtual collections, i.e. they should support the user in aggregating
the metadata descriptions of DOs even from various repositories to build collections fit for
any kind of purpose such as writing a thesis on a collection of objects. Figure 2.1, “Building
virtual collections by aggregating metadata descriptions” indicates this process: a user can
aggregate metadata descriptions from one or more existing collections into a “basket” to create
a collection. To build virtual collections the actual DOs are not moved, only the metadata
descriptions that have pointers to the objects are being collected. Such a virtual collection can
also be described by a metadata description, which will contain next to the typical metadata
keywords describing its properties a long list of references pointing to the metadata descriptions
of the objects included.

Figure 2.1. Building virtual collections by aggregating metadata
descriptions

http://childes.psy.cmu.edu/
http://childes.psy.cmu.edu/
http://www.tei-c.org/
http://www.tei-c.org/

Metadata

16

Conversely, there is a large debate what kind of granularity should be chosen to assign metadata
that can be used in the above-mentioned ways. Many repositories still offer only metadata
descriptions for whole collections without pointing to the descriptions of individual objects.
Imagine a corpus of lower-saxonian German including variants spoken at the coastal areas from
the North Sea and Baltic Sea and recorded over some time. We could give the whole corpus
one metadata description to publish and register it. This would allow users to find this corpus
and to work with it as a whole. But let’s assume that an analysis work is directed to the question
whether there are differences between male and female speakers in losing their capabilities of
speaking the variants. There would be no chance based on metadata descriptions to make a
simple query and group the whole collection into two or more sub-collections. Having a high
granularity of metadata descriptions simplifies re-using a collection in particular in ways as
they were not foreseen by their creators and thus supporting new research questions.

Tip

Thus we can conclude that it makes sense to associate each meaningful digital
object with a metadata description to support identifying and re-combining them
to address new research questions.

3. Types of Resources and Metadata
Components

Metadata frameworks need to allow researchers to describe different resource types that occur
in the area of linguistics ranging from raw material in form of texts, audio and video recordings,
brain imaging, eye tracking etc. to derived data which can include completely different types
such as lexica, results of statistical analysis in table form, etc. All these resource types can be
created by researchers from different sub-disciplines in linguistics. Thus the heterogeneity of
the resource types and the intentions of the researchers needs to be covered by a metadata
framework that allows to use metadata for research questions and not just to discover useful
resources by approximate semantics.

In 2000 two groups discovered that the suggestions coming from the library world were not
sufficient to meet the researchers’ needs:

1. In early 2000 the IMDI group [http://www.mpi.nl/imdi/] (widely European experts) decided
to develop the IMDI metadata set that is structured, extendible and includes domain
semantics to express the linguistic wishes.

2. In late 2000 the OLAC group, with its origins mainly in the US, decided to extend the Dublin
Core [http://dublincore.org/] set by a few linguistically relevant categories to meet the most
urgent needs, but also to remain simple.

Other suggestions were made in the linguistic domain such as ENABLER [http://www.enabler-
network.org/], but since no tools supported them these suggestions were not used. Both IMDI
and OLAC were used by various linguistic resource centers with different purposes in mind.
However, both approaches suffered from some major deficits:

1. Despite possibilities to add extensions they both offered a limited set of categories – OLAC
severely more restricted than IMDI.

2. Despite its greater expressiveness due to structure options IMDI as well as OLAC had a
fixed schema, i.e. even if a creator only knew about four values for example he had to cope

http://www.mpi.nl/imdi/
http://www.mpi.nl/imdi/
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/
http://www.enabler-network.org/
http://www.enabler-network.org/
http://www.enabler-network.org/

Metadata

17

with all requested input fields or when a new sub-discipline (e.g. sign language experts)
wanted to use IMDI a new special profile had to be created and integrated.

It was obvious that only a flexible component model could overcome the limitations and
give all researchers from the various sub-disciplines the possibility to create the profiles they
would like to use and that are tailored for their intentions. It is obvious that syntax does not
hamper interpretation if the meaning of the categories being used is widely independent of their
structural embedding, i.e. these definitions have to be semantically narrow. We need to define
categories such as date of birth, date of creation, date of annotation, etc. instead of semantically
broad categories such as date where the interpretation is defined by its structural embedding.
These considerations were the motivation to build CMDI:

• it should allow users to define their own components resulting in tailored profiles,

• the components need to make use of categories the definitions of which are registered in
ISOcat (see Section 2, “ISOcat, a Data Category Registry”), and

• semantic interoperability and interpretability is guaranteed by fine-grained semantics.

Tip

Only flexible component models have the expressive power to cover the
heterogeneity of a broad filed in terms of resource types, variety of sub-disciplines
and research intentions.

4. Lifecycle Management
Lifecycle management of data is becoming a very important issue, since proper lifecycle
management will influence the accessibility and re-usability of data over years. Lifecycle
management includes a number of aspects such as taking care of preserving identity, integrity
and authenticity of data, of data curation, of creating metadata to capture contextual and
provenance information, etc. Increasingly often data objects are not created by manual
operations anymore, but by algorithms that automatically operate on existing data objects. For
all creation acts – be it manual or automatic – it is of crucial importance to consider lifecycle
management aspects from the beginning, i.e. in particular to create metadata.

In both cases it means extra work for the software developers or data creators, resulting in large
delays of the creation of metadata descriptions. But [Beagrie 2001] showed convincingly that
shifting the creation of metadata to a later point in time would be much more costly compared
to doing it immediately.

Tip

We can only recommend starting with metadata considerations and with the
creation of metadata descriptions as early as possible.

5. Existing MD sets
Here we want to briefly introduce a few relevant metadata standards and best practices
respectively that are relevant for the area of linguistic resources and tools.

Metadata

18

5.1. Dublin Core Metadata Initiative (DCMI)
The Dublin Core Metadata Initiative [http://dublincore.org/] was started in the library world to
come up with a descriptor set that can be used to describe all kinds of web-resources. In total
15 categories have been defined by a worldwide harmonization process. Due to the need to
describe the most different types of objects these 15 categories are semantically broadly defined
and a generic terminology is being used. DCMI does not make statements about a specific
schema to be used. Since for many applications these 15 categories were too broadly defined
DCMI defined later the “qualified DC” categories, which have a narrower semantic scope.

DCMI has still much relevance in the world of digital libraries and is often used in areas where
global searches are seen as being sufficient. The DC set is widely accepted for cross-disciplinary
metadata aggregation although much information in general is being lost.

5.2. ISLE Metadata Initiative
Early in 2000 the ISLE (International Standards for Language Engineering) project [http://
www.ilc.cnr.it/EAGLES/isle/ISLE_Home_Page.htm] was started to come up amongst others
with a metadata standard more focusing on the world of multimedia and multimodal resources.
After several discussions with the DCMI user group it was finally decided by the IMDI group
to use a structured metadata set to have greater expressive power and to better model the
descriptions of such complex resources or resource bundles as they occur in linguistics, to make
use of linguistic terminology to support research questions, to leave space for extensions by
user-defined key-value pairs and to allow data managers to use IMDI to organize and manage
large data collections. A schema and tools were developed allowing interested people to use
IMDI for real work. IMDI has been used by a number of projects and data centers worldwide;
however, its outreach was limited.

5.3. Open Language Archive Community (OLAC)
In the autumn of 2000 the OLAC initiative [http://www.language-archives.org/] was made
public with one of its main goals to extend the DCMI category set by four additional and
linguistically meaningful categories (linguistic field, linguistic type, discourse type, language
code). OLAC presented itself as a metadata service provider, i.e. an organization that will
harvest metadata from linguistic data centers and support retrieval services. Thus the OLAC set
is not meant as a way to organize and manage large collections and to support specific research
questions.

It is widely agreed by linguistic data centers to produce OLAC compliant mappings and to
allow OLAC to harvest all metadata records. Large variations in the granularity of the offered
descriptions present a challenge for search engines as well as for users.

5.4. CHAT
The CHAT format was invented to support the CHILDES (Child Language Data Exchange
System) program [http://childes.psy.cmu.edu/] in creating and collecting much data in
particular about how children are talking and interacting. The CHAT format is a pure ASCII-
based flat text format that has defined so-called header categories that can be compared with
typical metadata keywords, since it allows specifying the speakers, the language and other
contextual aspects. CHAT allows describing also sub-sections, i.e. header type of information
can occur everywhere in the annotation transcript. CHAT and with it the header categories is a

http://dublincore.org/
http://dublincore.org/
http://www.ilc.cnr.it/EAGLES/isle/ISLE_Home_Page.htm
http://www.ilc.cnr.it/EAGLES/isle/ISLE_Home_Page.htm
http://www.ilc.cnr.it/EAGLES/isle/ISLE_Home_Page.htm
http://www.language-archives.org/
http://www.language-archives.org/
http://childes.psy.cmu.edu/
http://childes.psy.cmu.edu/
http://childes.psy.cmu.edu/

Metadata

19

widely used format in developmental linguistics and beyond. Metadata and annotation data are
thus merged in one file, so that metadata extraction is required to support the relevant functions.

5.5. Text Encoding Initiative (TEI)
The Text Encoding Initiative [http://www.tei-c.org/] recently presented their P5 version [http://
www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html] allowing users to describe a wide
variety of resource types. Its expressional power is extensive since its structural specifications
allow users to combine categories in almost unlimited ways. Also TEI has so-called header
categories that are meant to describe the whole resource and these header descriptions are part
of the total document structure, i.e. typical metadata categories and annotation categories can
appear intertwined. Due its almost unlimited expressive power almost all applications of TEI
are based on specific sub-schemas. Thus TEI resources appear in a large variety of flavors the
interpretation of which requires knowledge about the specific schemas.

TEI is widely being used in some humanities disciplines. However the interpretation of the TEI
files widely depends on the availability of specific schemas. For harvesting metadata from TEI
files the specific sub-schema must be known and an extraction has to be done.

5.6. Component Metadata Initiative (CMDI)
The Component Metadata Initiative [http://www.clarin.eu/cmdi] brought together a large group
of leading linguists from different sub-disciplines to define a metadata framework that is
flexible enough to cover the different wishes from the various sub-disciplines and projects,
but nevertheless has the expressive power to serve for the various functions mentioned above
including those that are emerging in the e-Research scenario. As already indicated the core of
CMDI was the definition of a set of categories the semantics of which are sufficiently specific
to guarantee interoperability and interpretability. Substantial work was carried out by the group
of linguists to define a robust set of categories which have been registered in ISOcat and which
can be extended and altered if necessary. A flexible syntactical framework allows users to
combine categories to components and profiles.

The CMDI framework will be explained in more detail below. Here we would like to summarize
that CMDI can be seen as a flexible syntactical umbrella to include the metadata categories
defined so far, to cover the needs of a wide variety of disciplines, the requirements posed by
different usages and linguistic data types. In so far it is a big step ahead with respect to expressive
power and coverage. However, communities of usage (such as OLAC etc) are not requested to
change their practices as long as no additional functionalities are required.

6. The Component Metadata Initiative
(CMDI)

6.1. What is it?
Rather than a single metadata format, the Component Metadata Infrastructure [http://
www.clarin.eu/cmdi] provides a framework to create and use self-defined metadata formats. It
relies on a modular model of so-called metadata components, which can be assembled together,
to improve reuse, interoperability and cooperation among metadata modelers. With a culinary
analogy one could call it metadata “à la carte”: instead of choosing one completely predefined

http://www.tei-c.org/
http://www.tei-c.org/
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html
http://www.clarin.eu/cmdi
http://www.clarin.eu/cmdi
http://www.clarin.eu/cmdi
http://www.clarin.eu/cmdi
http://www.clarin.eu/cmdi

Metadata

20

schema you can select your preferred plates (components) and group them until you have a
whole (profile) that suits your needs.

There is however an important difference with a restaurant. In case none of the proposed
components fulfill the requirements, the user can always create a new one. Figure 2.2, “Profiles
are made up of components” displays how a relatively small set of components (general
metadata, metadata for textual resource, metadata for multimedia and metadata on persons)
can be combined in tailored profiles.

Figure 2.2. Profiles are made up of components

6.2. Why yet another metadata format?
In the previous section a whole list of existing metadata formats was listed. One could ask why
it is necessary to come up with a new metadata formalism, and why CLARIN thinks this will
make a difference compared to choosing one of the existing formats. The answer is manifold:

• First of all CMDI is not just another format. It is much more: as a meta-model it provides
a well-defined framework to define and use your own format. It also allows the user to
integrate existing schemas (IMDI, OLAC) as components and thus offers interoperability
to the existing base.

• No single metadata scheme could ever address all the needs of the heterogeneous community
of humanities and social sciences researchers: they range from describing Greek texts on
vases over gesture analysis in YouTube videos to noting down phonetic features of telephone
recordings. Hence the need for a flexible solution.

• There is a clear need for semantically explicit metadata descriptions. Ambiguity could
otherwise threaten the usefulness of metadata when many metadata descriptions, coming
from a multitude of sources, are made searchable.

In the coming section we will go into more technical details of the CMDI model.

6.3. The CMDI model
Work on CMDI started in 2008 in the context of the European CLARIN research infrastructure
[http://www.clarin.eu]. Most existing metadata schemas for language resources seemed to be

http://www.clarin.eu
http://www.clarin.eu

Metadata

21

too superficial (e.g. OLAC) or too much tailored towards specific research communities or use
cases (e.g. IMDI).

CMDI addresses this by leaving it to the metadata modeler how a schema should look
like. It is based on the use of metadata components making use of agreed and registered
categories. These elementary building blocks contain one or more elements (also known as
fields) describing a resource. For instance, an actor component can group elements like first
name, last name and sex. A component can also contain one or more other components, allowing
a lego brick approach, where many small components together form a larger unit. To continue
with the actor example, such a component could include a sub-component actor language,
containing a set of fields describing the language(s) a person can speak.

Figure 2.3, “A component describing an actor” shows a typical
component describing an Actor [http://catalog.clarin.eu/ds/ComponentRegistry?
item=clarin.eu:cr1:c_1274880881804], consisting of two elements (firstName and
lastName) and an embedded ActorLanguageName component. You can explore the
component in the CMDI component registry [http://catalog.clarin.eu/ds/ComponentRegistry?
item=clarin.eu:cr1:c_1274880881804].

Figure 2.3. A component describing an actor

Ultimately a set of components will be grouped into a profile – this “master component” thus
contains all fields in a structured way that can be used to describe a language resource.

The CMDI component registry

In order to promote the re-use and sharing of components and profiles, the
CMDI component registry [http://catalog.clarin.eu/ds/ComponentRegistry/#] was
created. A web application (see Figure 2.4, “The CMDI component registry”)
allows metadata modelers to browse through all existing components and profiles
and to create new ones, with the possibility to include existing components.
The component registry is open to anyone to read components. Submitting new
components can only be done by accredited experts to guarantee that only correct
and proven components are ready for reuse by others.

http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1274880881804
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1274880881804
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1274880881804
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1274880881804
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1274880881804
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1274880881804
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1274880881804
http://catalog.clarin.eu/ds/ComponentRegistry/#
http://catalog.clarin.eu/ds/ComponentRegistry/#

Metadata

22

Figure 2.4. The CMDI component registry

After creating or choosing a profile, the user can generate an XML W3C schema
(also known as an XSD file) that contains a formal specification of the structure
of the metadata descriptions that are to be created. This schema too can be
accessed from the component registry, with a right click on the profile, choosing
the “Download as XSD” option. From then on the schema can be used to check the
formal correctness of the CMDI metadata descriptions. See Section 1.1, “Well-
formedness and schema compliance” for more information on formal correctness
checking.

CMDI data format

A CMDI metadata description (stored as XML file with the extension .cmdi)
consists of three main parts:

• A fixed Header, containing information about the author of the file, the
creation date, a reference to the unique profile code and a link to the metadata
file itself.

• A fixed Resources section, containing links to the described resources or
other CMDI metadata descriptions.

• A flexible Components section, containing all of the components that belong
to the specific profile that was chosen as a basis. In our earlier example there
would be one Actor component immediately under the Components tag.

A set of CMDI example files can be found on the CLARIN EU website [http://
www.clarin.eu/page/3312].

http://www.clarin.eu/page/3312
http://www.clarin.eu/page/3312
http://www.clarin.eu/page/3312

Metadata

23

6.4. Explicit semantics
To avoid ambiguity and to achieve clear semantics when using metadata, the CMDI model
has close ties to the ISOcat data category registry (see Section 2, “ISOcat, a Data Category
Registry”). The model can also be easily extended to other widely agreed registries of data
categories. Because the system relies on a (potentially large) set of components created by many
different users, the risk is there that searching in the metadata descriptions becomes unfeasible
as:

• an element might have different names within multiple components (e.g. name or last name),

• a user might not be aware that there are multiple components that contain a specific element,
even when they are called the same (e.g. name), and

• some elements might have the same label (say name) but might mean something different
(e.g. project name versus person name).

The solution (or at least a part of it) is in declaring what each element really means. When adding
an element to a CMDI component the metadata modeler has to add a link to the ISOcat data
category registry, where very detailed definitions are available. This link provides a persistent
and unique identification of the intended semantics.

Consider the example mentioned above consisting of two components, both containing a
description of an actor, where one refers to a person’s last name with the label “Name” and
another one with the label “Last Name”. When both point to the data category last name
[http://www.isocat.org/datcat/DC-4195], both the search machines and human users know
what is precisely meant. It is the reference and not the used label that clarifies the intended
semantics. This method is illustrated in Figure 2.5, “Declaring explicit semantics in CMDI with
links to data categories”.

http://www.isocat.org/datcat/DC-4195
http://www.isocat.org/datcat/DC-4195

Metadata

24

Figure 2.5. Declaring explicit semantics in CMDI with links to data
categories

More information on CMDI and ISOcat can be found on a frequently asked questions page of
the CLARIN EU website [http://www.clarin.eu/faq/281].

6.5. Procedure
As the CMDI framework aims to enhance the reuse and sharing of metadata components, one
of the important aspects in using it is finding out existing material (be it profiles, components
or data categories) that could be used. Only if this is not the case one should create these from
scratch.

In general, the procedure to identify relevant building blocks looks as follows (the diagram in
Figure 2.6, “Procedure for CMDI metadata modeling” summarizes the whole procedure):

1. Search in the component registry for interesting profiles. If one of them matches the
requirements, use this one.

2. If a profile matches more or less the requirements, check how to create a derivative that
meets your requirements.

3. Otherwise, look in the Component Registry for useful components:

a. If you can create a profile out of existing components, do so.

b. Otherwise, create additional components:

i. Link to existing data categories when they match the semantics of the elements in
your component.

http://www.clarin.eu/faq/281
http://www.clarin.eu/faq/281
http://www.clarin.eu/faq/281

Metadata

25

ii. Otherwise, create new data categories yourself and link to these from the new
component. Consult Section 2, “ISOcat, a Data Category Registry” for more
information on how to do this.

Figure 2.6. Procedure for CMDI metadata modeling

A practical example to CMDI profile creation

This section will contain a concise step-by-step guide starting an MD profile from
scratch based on an existing ressource.

6.6. Profile and component adaptation
Many users find that there is an existing profile or component (further on: component) that
mostly fits their needs, but just needs some minor changes, e.g. adding an extra element or
renaming an existing one. In such cases it is possible for expert metadata modelers to use an
existing component, make the preferred changes and to store it separately in the component
registry. It is important to realize that such derivative components are not any longer connected
to the original. In case of components with embedded subcomponents, this means that even
a small change in one of the lower-situated components results in the need to create alternate
versions of the parent components, as these are built in a bottom-up manner. Thus creating
a new component requires some care from the user. This way of working is illustrated in
Figure 2.7, “Creating a derivate profile with an altered component”.

Metadata

26

Figure 2.7. Creating a derivate profile with an altered component

6.7. Preferred components and profiles
With currently about 300 components and about 70 profiles available, the question arises
if we can recommend some components. This is certainly the case, we strongly advise to
use those components, which contain standardized vocabularies for language names, country
names, continents, etc. This will greatly enhance the interoperability and the metadata
quality. Some other components, like cmdi-description [http://catalog.clarin.eu/ds/
ComponentRegistry?item=clarin.eu:cr1:c_1271859438118] are also general enough to be
recommended. It should be noted that the list of recommended components and profiles [http://
www.clarin.eu/faq/3491] that adhere to high quality standards (e.g. there are ISOcat links for
all elements used) is constantly growing and therefore it is recommended to check the most-
up-to-date information.

6.8. Converting existing metadata to CMDI
Quite often there is already some metadata available in a non-CMDI format. For certain
frequently occurring conversions there are conversion methods available. Such a method
includes:

• a corresponding CMDI profile that contains all of the fields of the original metadata format
and

• a conversion script or stylesheet for the actual conversion.

For OLAC, DC, IMDI and TEI-headers these conversion methods are described in detail on
the CLARIN EU website [http://www.clarin.eu/faq/282]. A similar conversion scheme for
MetaShare [http://www.meta-net.eu/meta-share] metadata is planned but not yet available.

7. Aggregation

http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1271859438118
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1271859438118
http://catalog.clarin.eu/ds/ComponentRegistry?item=clarin.eu:cr1:c_1271859438118
http://www.clarin.eu/faq/3491
http://www.clarin.eu/faq/3491
http://www.clarin.eu/faq/3491
http://www.clarin.eu/faq/282
http://www.clarin.eu/faq/282
http://www.clarin.eu/faq/282
http://www.meta-net.eu/meta-share
http://www.meta-net.eu/meta-share

Metadata

27

7.1. Metadata Harvesting
The wish to have a central catalog covering metadata aggregated from different repositories has
led to the emergence of the Open Archives Initiative's protocol for metadata harvesting (OAI-
PMH [http://www.openarchives.org/pmh/]) as a de-facto standard for gathering metadata into
a single catalog – a process that is called metadata harvesting.

In the OAI-PMH model the world is divided in data providers, that offer metadata for
harvesting, and service providers that harvest the metadata and offer discovery service to the
world, for instance a central metadata catalog. The OAI-PMH protocol is fairly efficient and
simple to implement. Each data center that is offering linguistic resources should offer metadata
descriptions that can be harvested by service providers – for CLARIN centers it is mandatory
to support the OAI-PMH protocol.

OAI-PMH requires that the metadata is in all cases also offered in DC format next to any
other format such as for example CMDI. This allows that metadata from different disciplines
can be harvested and put into one catalog although presumably much information will be lost
by mapping all metadata to the rather simple and restricted DC set. When all harvested data
providers have agreed to also provide metadata of another set than DC, it is of course possible
to create a more useful catalog.

7.2. Metadata gathering and searching: the
Virtual Language Observatory (VLO)

Gathering all CMDI metadata into one large basket does not make sense without an intuitive
interface to search and explore the information that it contains. In the case of CLARIN the
metadata provided by the centers in the CMDI format is harvested via OAI-PMH and then
made accessible via the Virtual Language Observatory [http://www.clarin.eu/vlo/] (VLO).
More details on the harvesting process employed by the VLO can be found on the CLARIN
EU website [http://www.clarin.eu/faq/279]. Anyone else can also build a portal based on the
same principles. However, it should be noticed that aggregating and mapping metadata from
different service providers in general does involve much curation effort.

With the VLO's facet browser it is possible to quickly navigate through this constantly growing
inventory of language resource (and tools) metadata. Using a full-text search one can quickly
identify electronic and non-electronic sources of information. The results can also be refined
step-by-step by specifying a particular language, collection, resource type, subject and so on.
While the VLO is not a tool by itself that can directly answer research questions it allows any
user with an Internet connection to efficiently search within a metadata catalogue, as to identify
language resources and tools that might be helpful for research purposes. As such it can serve
as leverage for the reuse of data sets and archived language material in general.

Suppose a multidisciplinary research team of historians, linguists and cultural psychologists is
investigating sign language iconicity in the context of the fall of the Berlin wall. Figure 2.8,
“Using the VLO to identify relevant language resources” and Figure 2.9, “Accessing the results
of a VLO query” illustrate how the VLO can be used to explore some of the resources that
might be relevant for such a study.

http://www.openarchives.org/pmh/
http://www.openarchives.org/pmh/
http://www.openarchives.org/pmh/
http://www.clarin.eu/vlo/
http://www.clarin.eu/vlo/
http://www.clarin.eu/faq/279
http://www.clarin.eu/faq/279
http://www.clarin.eu/faq/279

Metadata

28

Figure 2.8. Using the VLO to identify relevant language resources

A full text metadata search on the word “Wende” returns 23 results (out of 179.000)

This set is narrowed down to 1 result when selecting only the results that are about German
Sign Language

Metadata

29

Figure 2.9. Accessing the results of a VLO query

The user clicks on this single result to view the details of the metadata

A user clicks on one of the metadata-described resources and can inspect it

8. Recommendations
As a conclusion to this metadata chapter we would like to give some advice about metadata
creation in general:

• Always start as early as possible to collect and create metadata. Otherwise chances are high
that information is lost or that fixing the incomplete metadata records afterwards will be
very costly.

• Try to achieve a high but reasonable level of granularity.

• When using CMDI (which is required by CLARIN):

• Try to reuse as much as possible. It should save you work and will enhance the
interoperability.

• Be aware that there are conversion methods in place for the most widely used formats –
there is no need to reinvent the wheel.

30

Chapter 3. Resource annotations
Kerstin Eckart, Universität Stuttgart

To annotate a resource usually means to enhance it with various types of (linguistic) information
[McEnery/Wilson 2001, page 32]. This is done by attaching some kind of information to parts
of the resource and/or introduce relations between those parts which can again be annotated
with information. Thereby the annotated information is always an interpretation of the data
with respect to a particular understanding.

Annotating a resource can be done manually by one or more annotators, automatically by a
tool or semi-automatically e.g. by manually correcting automatic annotations. The annotated
information can be represented in terms of atomic or hierarchical tags, complete feature
structures or simple feature value pairs. The whole annotation document is stored or visualized
in a specific representation format.

The rules by which information is attributed to parts of the resource are captured in an
annotation scheme, specifying e.g. guidelines, which should be used to inform and control the
work of human annotators or correctors. [Schiller et al. 1999] for example specifies guidelines
for annotating parts-of-speech. They also provide a finite set of category abbreviations, thus
composing a tagset (the Stuttgart-Tübingen tagset for part-of-speech tagging, STTS). Other
tagsets for part-of-speech and syntax annotation are utilized in the Penn Treebank (PTB)
project [http://www.cis.upenn.edu/~treebank/], see for example [Santorini 1990] and [Bies et
al. 1995].

Linguistic annotation schemes reflect linguistic theories or are tailored with respect to the
investigation of a specific phenomenon. They are an essential part of the documentation which
accompanies an annotated resource.

However, it is important to distinguish between the concepts of guidelines, tagsets and
representation formats. While tagsets often evolve when elaborating the annotation guidelines
and the tags tend to be abbreviations for the decisions made, they could definitely be replaced
by other abbreviations, i.e., there could be more than one tagset part of an annotation scheme,
e.g. tagsets differing in granularity. Some tagsets can be understood as taxonomies. In the
abbreviations applied in STTS the letters of the tag denote more general information on the left
and more specific information on the right: VVFIN is a main verb (VV) which is finite (FIN),
VAFIN is a finite auxiliary verb. This structure can be helpful when queries are conducted via
regular expressions.

Some annotations cannot make use of a predefined tagset, such as when annotating synonyms.
The representation format again is distinct from the concepts of the guidelines and tagsets. It
specifies how the annotation content is represented. One has to be aware that on the one hand
annotations with the same content can be represented in very different ways and that on the
other hand using the same representation format, i.e., an XML format like TIGER XML [http://
www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/html/TigerXML.html] for two
annotations does not mean that the annotation content of the two is the same, or even similar.

Lastly, as stated by [McEnery/Wilson 2001, page 33] and [Leech 1993] one has to be aware,
that any act of annotating a resource is also an act of interpretation, either of its structure or of
its content. Therefore an annotation is never universal consensus. Moreover it has to be taken
into account that the process of annotating is also likely to introduce errors, see Chapter 5,
Quality assurance .

http://www.cis.upenn.edu/~treebank/
http://www.cis.upenn.edu/~treebank/
http://www.cis.upenn.edu/~treebank/
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/html/TigerXML.html
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/html/TigerXML.html
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/html/TigerXML.html

Resource annotations

31

1. Aspects of annotations
In this section we introduce the different ways how to technically attach linguistic annotations
to a resource, and which advantages, disadvantages and consequences come along with each of
these. We show examples of different annotation styles and annotations from different linguistic
layers, which are utilized by existing resources, current research projects and/or within the
CLARIN-D infrastructure.

1.1. Inline vs. stand-off annotations
Annotations have mostly been attached to the related parts of the resource as inline annotations
or stand-off annotations.

Inline annotations are directly included into the resource, thereby changing the primary data.
Examples are token-based or phrase-based annotations which are directly attached to the
related string with separators or structural tags. We use the term token to include punctuation
and to avoid going into the definition of the notion word here, as it may vary in different
resources.

Example 3.1, “LOB style inline annotation” shows an inline part-of-speech annotation in
the encoding style of the tagged Lancaster-Oslo-Bergen (LOB) corpus [http://khnt.hit.uib.no/
icame/manuals/lobman/index.htm], Example 3.2, “Penn Treebank style inline annotation”
shows an inline annotation of part-of-speech and syntactic phrases using the bracketing style
of the Penn Treebank. Both examples represent the sentence Er fährt ein Auto. (“He drives
a car.”).

Example 3.1. LOB style inline annotation

Er_PPER fährt_VVFIN ein_ART Auto_NN ._$.

The tags included in this example and in Example 3.2, “Penn Treebank style inline annotation”
are NN (common noun), PPER (personal pronoun, excluding reflexive pronouns), VVFIN
(finite main verb), ART (determiner), $. (sentence-end marker), S (sentence), NP (noun
phrase). Sentence and tags have not been taken from the mentioned corpora, which contain
English text and make use of other tagsets, but have been chosen for exemplification of the
annotation styles only.

Example 3.2. Penn Treebank style inline annotation

(S
 (NP (PPER Er))
 (VP (VVFIN fährt)
 (NP (ART ein) (NN Auto))
)
 ($. .)
)

See Example 3.1, “LOB style inline annotation” for a description of the tags used here.

Stand-off annotations are stored separately from the primary data they refer to, see [Thompson/
McKelvie 1997], thereby leaving the primary data untouched. References into primary data,

http://khnt.hit.uib.no/icame/manuals/lobman/index.htm
http://khnt.hit.uib.no/icame/manuals/lobman/index.htm
http://khnt.hit.uib.no/icame/manuals/lobman/index.htm

Resource annotations

32

e.g. the original text to be annotated, or into other annotation layers denote the parts to which
the annotations belong, see [Zinsmeister et al. 2008]. For these references different mechanisms
can be used, often depending on the media type of the primary data.

Example 3.3, “PAULA annotation” shows a stand-off annotation making use of XPointers, see
[Grosso et al. 2003], for reference into the primary data. This requires the original resource to
be stored in a file which can be referenced by XPointers such as an XML file.

Example 3.3. PAULA annotation

<body>Er fährt ein Auto.</body>

<mark id="tok_1"
 xlink:href="#xpointer(string-range(//body,'',1,2))"/>
<mark id="tok_2"
 xlink:href="#xpointer(string-range(//body,'',4,5))"/>

<!-- ... -->

<feat xlink:href="#tok_1" value="stts.type_pos.xml#PPER"/>
<feat xlink:href="#tok_2" value="stts.type_pos.xml#VVFIN"/>

<!-- ... -->

The example is encoded in the PAULA format, see [Dipper 2005], version 1.1. Tokens are
defined with respect to relative character positions. The first token starts in position 1 of the
string and includes 2 characters etc., see [Zinsmeister 2010].

Stand-off annotation is also used when annotating other media types than text, e.g. audio files.
In the WAVES format, for example, transcriptions and annotations are aligned by timestamps.

The Linguistic annotation framework (LAF, [ISO 24612:2012]) refers to primary data via an
arbitrary number of anchors specifying medium-dependent positions, e.g. coordinates, frame
indexes or pre- and post-character positions in text, video or other kinds of data. For an example
see Section 2, “Exchange and combination of annotations”

There are also hybrid forms of referencing combining stand-off and inline approaches such as
the XML-format TIGER XML. In this format the original text is segmented into tokens without
references into the original resource. The annotation of the syntactic phrases is represented as a
separate layer on top of the part-of-speech annotation of the tokens. In the annotation part for
the syntactic phrases, the tokens are referred to by identifiers, e.g. s1_1. Example 3.4, “Tiger
XML” shows an excerpt of a part-of-speech and syntax analysis of the example given above,
this time represented in TIGER XML.

Example 3.4. Tiger XML

<s id="s1" >
 <graph root="s1_500" >
 <terminals>
 <t id="s1_1" word="Er" pos="PPER" />
 <t id="s1_2" word="fährt" pos="VVFIN" />
 <t id="s1_3" word="ein" pos="ART" />
 <t id="s1_4" word="Auto" pos="NN" />

Resource annotations

33

 <t id="s1_5" word="." pos="\$." />
 </terminals>
 <nonterminals>
 <nt id="s1_502" cat="NP" >
 <edge idref="s1_1" label="--" />
 </nt>
 <nt id="s1_503" cat="NP" >
 <edge idref="s1_3" label="--" />
 <edge idref="s1_4" label="--" />
 </nt>
 <!-- ... -->
 </nonterminals>
 </graph>
</s>

For resources other than text, stand-off annotation with references into the original data is
the only way to annotate at all, but annotators of textual resources have so far made use
of inline annotations in many projects. While processing or querying stand-off annotation
includes some sort of link or pointer resolution problem, the problem with inline annotation
is that often the original resource cannot easily be recovered just by removing the annotation.
Difficulties arise for example when information like the placement of whitespaces, line
breaks or other formatting information has not been made explicit in the annotated resource.
Another difficulty with inline formats are overlapping annotations, for example, when different
annotation schemes are applied to the same data, or if formating information such as page
segmentations overlap with the annotation of linguistic units, e.g. sentences. Moreover it is
more difficult to work in parallel with the same resource, as new annotation layers would have
to be inserted into the same source or document.

Stand-off annotation provides for more sustainability and flexibility: each annotation layer is
encapsulated and can coexist with alternative or even conflicting versions of the same type of
annotation.

Although more and more projects prefer the usage of stand-off annotation for sustainability
reasons, there are still cases where inline annotations are needed. Natural language processing
tools need to take into account more (structural) information when working on stand-off data
which may have an impact on processing time – especially if large amounts of data have to
be processed.

While CLARIN-D recommends the use of stand-off annotations for newly annotated resources,
existing resources making use of inline annotations can also be hosted by CLARIN-D center
repositories. Annotations should be accompanied by thorough documentations and, where
possible, follow well-established practices (e.g. TEI, PTB format etc).

An important representation format in CLARIN-D is the text corpus format (TCF, see [Heid et
al. 2010]) as an intermediate format in web service chains. When entering a chain of annotation
tools in the WebLicht platform (see Chapter 8, Web services: Accessing and using linguistic tools)
the input is firstly converted into TCF, which is an example for a combined format utilized
in CLARIN-D.

In TCF the input text and its annotations are stored in the same document (technically: one file).
The segmented tokens are provided with identifiers (if they are not already present) stored in a
separate section of the file. They do not contain explicit references into the input text. Higher
layers of annotation, e.g. part-of-speech annotations, are also stored in separate sections of the

Resource annotations

34

file and refer to the token identifiers. This way, input text, segmentated text and annotations
can be handled separately in the outcome of an annotation chain. It is important to provide
the possibility to represent the original text as well as the token layer, so that the possible tool
chains or future web services are not restricted by the input layers they can choose from. See
Example 3.5, “TCF corpus format” for an illustration of the use of stand-off annotation in TCF.

Example 3.5. TCF corpus format

<TextCorpus xmlns="http://www.dspin.de/data/textcorpus"
 lang="de">
 <text>Er fährt ein Auto.</text>
 <tokens>
 <token ID="t1">Er</token>
 <token ID="t2">fährt</token>
 <token ID="t3">ein</token>
 <token ID="t4">Auto</token>
 <token ID="t5">.</token>
 </tokens>
 <sentences>
 <sentence ID="s1" tokenIDs="t1 t2 t3 t4 t5" />
 </sentences>
 <POStags tagset="STTS">
 <tag tokenIDs="t1">PPER</tag>
 <tag tokenIDs="t2">VVFIN</tag>
 <!-- ... -->
 </POStags>
</TextCorpus>

This example is encoded in TCF version 0.4.

1.2. Multi-layer annotation
As already demonstrated iabove, it is possible to have different layers of annotations attached
to the same primary data. Example 3.6, “TCF corpus format, extended” shows an extension of
the TCF example above with an additional layer containing annotations of base form(s) and a
syntactic annotation layer, each encapsulated and referring to the token layer. In this case all
annotation layers refer directly to the token layer, but there are also cases where one annotation
layer refers to another one lying "beneath" it. In these cases, one annotation layer immediately
depends on the other annotation layer.

Example 3.6. TCF corpus format, extended

<TextCorpus xmlns="http://www.dspin.de/data/textcorpus"
 lang="de">
 <text>Er fährt ein Auto.</text>
 <tokens>
 <token ID="t1">Er</token>
 <token ID="t2">fährt</token>
 <token ID="t3">ein</token>
 <token ID="t4">Auto</token>
 <token ID="t5">.</token>
 </tokens>

Resource annotations

35

 <sentences>
 <sentence ID="s1" tokenIDs="t1 t2 t3 t4 t5" />
 </sentences>
 <POStags tagset="STTS">
 <tag tokenIDs="t1">PPER</tag>
 <tag tokenIDs="t2">VVFIN</tag>
 <!-- ... -->
 </POStags>
 <lemmas>
 <lemma tokenIDs="t1">er</lemma>
 <lemma tokenIDs="t2">fahren</lemma>
 <!-- ... -->
 </lemmas>
 <parsing tagset="tigertb"><parse>
 <constituent cat="TOP">
 <constituent cat="S-TOP">
 <constituent cat="NP-SB">
 <constituent cat="PPER-HD-Nom"
 tokenIDs="t1"/>
 </constituent>
 <constituent cat="VVFIN-HD" tokenIDs="t2"/>
 <!-- ... -->
 </constituent>
 <!-- ... -->
 </constituent>
 </parse></parsing>
</TextCorpus>

The tagsets utilized here are STTS for the part-of-speech annotation and the tags from the
syntactic annotations of the TiGer treebank, see [Brants et al. 2002].

1.3. Relations between annotation types
Introducing different layers of annotations means to introduce relations, and sometimes also
dependencies between the layers. Nearly each linguistic annotation depends on a layer that
represents the results of a segmentation process. These segmentation layers therefore define
the parts of the resource which can be annotated. The ability to include specific annotations
depends on the granularity of the segmentation. For example, part-of-speech annotation can
not be carried out if the smallest parts to add annotations to are sentences; syntactic trees refer
to word-like terminals rather than to phonemes. If two single annotation layers refer to the same
segmentation layer, they can be related to each other via the segmentation layer.

In multi-level annotation, annotation layers depend on the content and integrity of the layer
they refer to. If a layer is changed in any way, e.g. due to manual corrections, a layer referring
to it might become invalid, as the parts to which its annotations referred might have changed
or be gone.

Similar problems arise, when primary data is corrected. An annotator may not harm the syntax
when correcting misspellings in a treebank, but other annotators might have been annotating
exactly those misspellings in the course of investigating types of misspellings in newspaper text.
On the other hand, corrections might sometimes be needed to make the data processable in the
first place, e.g. in the case of slips of the tongue in spoken text which might cause problems for a
parser. Therefore it is advisable to either apply versioning mechanisms for the primary data or to

Resource annotations

36

introduce a new layer for each modification of the primary data. As already existing annotation
layers may not apply to the new version of the primary data or to the modification layer, it
is important to explicitly specify the version or modification layer an annotation referes to. In
the example on misspellings in newspaper texts, an additional layer could contain a normalized
view of the primary data to include error corrections.

Like in representation formats, where stand-off annotation provides for higher flexibility, it can
be helpful to keep each layer as self-sustaining as possible. Nevertheless, a specific layer of
annotation often implies the existence of other annotation layers. E.g., in the annotation scheme
of [Riester et al. 2010] for information status, the hierarchical structure directly relies on a
constituent-based syntactic layer.

In automatic processing, dependencies also arise due to the tools which are utilized, see also
Chapter 7, Linguistic tools.

As resources are to be used for more than one purpose it is always helpful to make the relations
and dependencies explicit. In multi-layer stand-off annotation this should be done by including
dependencies or versioning information into the metadata for each annotation layer. On top
of that, before relying on another annotation layer for a new annotation one should check if
the underlying annotation covers all of the resources needed as there are annotations which do
not take every part of a resource into account, e.g. because they do not cover punctuation, or
because some parts have not (yet) been annotated.

2. Exchange and combination of
annotations

Nearly every resource (corpus or automatic annotation tool) comes with its own annotation
scheme, one or more tagsets, and one or more possible representation formats. However,
this multitude of formats, schemes, tagsets and underlying categorial distinctions is a serious
obstacle to the further processing and querying of heterogeneous resources, which is a likely
scenario within a research infrastructure like CLARIN-D.

In this section, we present an example of a generic exchange format for annotations, which can
be used with respect to different representation formats, we refer to the data category registry
from Chapter 1, Concepts and data categories to relate tagsets and we give an overview on how
the transfer of annotation schemes between different concepts has been handled so far.

2.1. Representing and exchanging complete
annotations: getting independent of a specific
representation format

Due to a number of different representation formats for annotations, varying from basic inline
formats to task-specifically tailored XML descriptions, the exchange of annotated data often
poses a problem. Therefore, structurally generic representations, which do not implement a
preference for a specific linguistc theory, are needed to serve as pivot formats in the conversion
procedure from one specific representation into another one, such as formats proposed by
TEI and ISO. For a complete overview of all standards exploited in CLARIN-D and their
relations see the CLARIN-D standards guidance web page [http://clarin.ids-mannheim.de/
standards/]. Since direct conversion often means to build a lot of single converters and on top

http://clarin.ids-mannheim.de/standards/
http://clarin.ids-mannheim.de/standards/
http://clarin.ids-mannheim.de/standards/

Resource annotations

37

of that probably also loss of information, an exchange format should be able to keep as much
information as possible from the input while only passing the relevant parts to the output format.

In the following section we describe one of those possible pivot formats, the Linguistic
annotation format (LAF, [ISO 24612:2012], see also [Hinrichs/Vogel 2010]). LAF uses a
simple graph structure as data model for the stand-off annotation layers which is generic enough
to handle different annotations. Some examples for annotation layers such as part-of-speech
and syntax are provided in the next sections. Other annotation layers can be represented as
well. LAF is also an ISO standard and therefore fits well into the CLARIN objective of taking
standards into account.

2.1.1. LAF – the Linguistic Annotation Framework
LAF is developed by the ISO technical committee 37 (ISO/TC 37/SC 4), and is related to
other standards developed within this group such as [ISO 12620:2009] on specification and
management of data categories for language resources and [ISO 24610-1:2006] on feature
structure representation. LAF provides a data model to represent primary data and different
kinds of linguistic annotations without commitment to one particular linguistic theory. It is
based on stand-off annotations where each annotation layer may contain references to elements
in other layers.

There is always at least one segmentation layer, which, as a result of a segmentation process,
defines the parts of the resource that may be further annotated. As different annotations
may refer to the resource with different granularity, it is also possible to have concurrent
segmentation layers for the same primary data.

While trying to leave the original resource untouched, the encoding plays a crucial role for
the references into the primary data. Positions in the primary data are for example defined in
between byte sequences denoting the base unit of representation. These positions are referred
to as virtual nodes. The byte sequence defines the minimal granularity for the parts to be
annotated. For textual data (UTF-8 encoded by default), virtual nodes are located between each
pair of adjacent characters of the primary data document. Anchors refer to these virtual nodes.
Example 3.7, “LAF virtual nodes” shows the virtual nodes defined between the characters.

Example 3.7. LAF virtual nodes

|h|i|s| |o|w|n| |w|e|b|s|i|t|e|
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Node numbers are to be read top-down. Anchors to node 568 and 575, e.g., denote the token
website. Anchors to the nodes 567 and 568 denote a whitespace.

LAF stipulates an XML-serialization as pivot format, which currently focuses on textual
data. Nevertheless, by utilizing the flexible anchor management for references into primary
data, LAF is designed to handle other types of media as well, e.g. audio data referenced by
timestamps.

2.1.2. GrAF – a graph-based XML-serialization for LAF
The XML-serialization of the LAF pivot format is called Graph annotation format(GrAF). It is
based on graph data structures and includes nodes, edges, regions for referencing primary data,

Resource annotations

38

and annotations which can consist of simple labels or complete feature structures (see [ISO
24610-1:2006]). Therefore annotations at different levels of complexity can be represented
[Ide/Suderman 2007].

The following examples of a segmentation and some annotation documents are extracted
from the MASC I Corpus [http://www.anc.org/MASC/Home.html]. MASC structure and
annotation details are taken from the MASC documentation website [http://www.anc.org/
MASC/MASC_Structure.html].

In a segmentation, regions of primary data are denoted by anchors. In Example 3.8, “LAF
reference to virtual nodes” the anchors refer to the virtual nodes in example Example 3.7, “LAF
virtual nodes”, so seg-r194 denotes the token his, seg-r196 the token own and seg-r198 the
token website respectively.

Example 3.8. LAF reference to virtual nodes

<region xml:id="seg-r194" anchors="560 563"/>
<region xml:id="seg-r196" anchors="564 567"/>
<region xml:id="seg-r198" anchors="568 575"/>

In an annotation document, nodes, edges and annotations can also be specified. A terminal
node, i.e., a node with a direct reference to the primary data, references a region with a link and
the respective annotations reference the node or edge element they belong to. Non-consecutive
parts of the primary data can be annotated by introducing a region for each part and referencing
them conjointly in the graph structure layered over the segmentation. Example 3.9, “LAF part-
of-speech annotation” reproduces a part-of-speech annotation from the Penn Treebank project
of the region denoting website.

Example 3.9. LAF part-of-speech annotation

<node xml:id="ptb-n00198">
 <link targets="seg-r198"/>
</node>

 <fs>
 <f name="msd" value="NN"/>
 </fs>

Edges in annotation documents denote their source node and target node with from and to
attributes. The node referenced by the edge attributes can also be defined in another annotation
document. In this case the annotation document containing the edge depends on the annotation
document containing the referenced node. In Example 3.10, “LAF syntactic annotation” his
own website constitutes a noun phrase, i.e., the category NP is annotated to the node with the
identifier ptb-n00195. This syntactic annotation (from the Penn Treebank project) depends
on the part-of-speech annotation in Example 3.9, “LAF part-of-speech annotation”. The node
ptb-n00198 from Example 3.9, “LAF part-of-speech annotation” is annotated as NN, and
referenced as the target of the edge in Example 3.10, “LAF syntactic annotation” .

Example 3.10. LAF syntactic annotation

<node xml:id="ptb-n00195"/>

http://www.anc.org/MASC/Home.html
http://www.anc.org/MASC/Home.html
http://www.anc.org/MASC/MASC_Structure.html
http://www.anc.org/MASC/MASC_Structure.html
http://www.anc.org/MASC/MASC_Structure.html

Resource annotations

39

 <fs>
 <f name="cat" value="NP"/>
 </fs>

<edge xml:id="ptb-e00192" from="ptb-n00195" to="ptb-n00198"/>
<!-- website -->

Example 3.11, “LAF event annotation” reproduces an annotation for events produced by
researchers at Carnegie-Mellon University. This annotation excerpt refers to the example
sentence: He said companies [..] would be able to set up offices, employ staff and own equipment
[..]. It denotes a setting up event with two arguments.

Example 3.11. LAF event annotation

<region xml:id="ev-r4" anchors="894 900"/>

<node xml:id="ev-n4">
 <link targets="ev-r4"/>
</node>

 <fs>
 <f name="arg1" value="companies"/>
 <f name="arg2" value="offices"/>
 </fs>

We describe the LAF/GrAF framework here, because it can take different annotation layers
into account. Within ISO technical committee 37 (ISO/TC 37/SC 4) there are also standards
(and upcoming standards) related to specific annotation layers, such as the Syntactic annotation
framework (SynAF, [ISO 24615:2010].

Users can transform their data format into the LAF pivot format GrAF, and from GrAF
into any other format for which an importer or exporter exists. There is ISO GrAF
[http://sourceforge.net/projects/iso-graf/], an experimental Java API provided to access and
manipulate GrAF annotations, and a renderer for the GraphViz visualization. [http://
www.graphviz.org/]

2.1.3. The 3-layer-framework of representations to include,
process and exchange

In terms of the WebLicht tool chains (see Section 3, “WebLicht – A service-oriented
architecture for linguistic resources and tools”), internal representations of existing tools should
not have to be changed in order to integrate them into the architecture. A 3-layer-framework,
which differentiates between tool format, processing format and exchange format is proposed.
Figure 3.1, “The 3-layer-framework” outlines the idea.

http://sourceforge.net/projects/iso-graf/
http://sourceforge.net/projects/iso-graf/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/

Resource annotations

40

Figure 3.1. The 3-layer-framework

To make a web service out of an existing tool, the tool is encapsulated in a wrapper, see
Chapter 8, Web services: Accessing and using linguistic tools. While the tools still work internally
using their own representations, the wrapper provides an interface converting the output into a
common processing format for the web service chains, e.g. TCF in the case of WebLicht. Note
that a processing format has to fulfill other requirements than an exchange format, being as
efficient as possible while staying as faithful to the original content as neccessary. After the web
service chain has been processed the data could again be converted into an exchange format
taking standard formats such as LAF or TEI into account.

2.2. Introduction and monitoring of data
categories: relating specific tagsets

The counterpart for a generic exchange format with respect to annotation representation is
a data category registry for annotation content, i.e., for defining relationship between the
categories used in the different tagsets. The problems which arise with this approach will
be shortly discussed here. For a more detailed discussion see Chapter 1, Concepts and data
categories, which describes the objectives of a data category registry and introduces ISOcat
[http://www.isocat.org/] as the data category registry utilized in CLARIN-D.

In the case of different tagsets, e.g. STTS for annotating part-of-speech in German data or
the Penn Treebank tagsets for part-of-speech and syntactic phrases with respect to (American)
English, we might have to deal with a number of mismatches or “misunderstandings” due to
different conceptions. Some examples are granularity, existence or duplication. Tagsets may
differ in granularity. E.g. in STTS, there are two tags for nouns, one for common nouns and one
for proper names, while in the Penn Treebank tagset nouns are additionally classified according
to their number (four tags). If we compare different tagsets we may come upon cases where a
certain category will be present in one tagset, but completely absent in another. Please note that
we are not comparing linguistic concepts here, but sticking to the actual information annotated.
Duplication means that there are the same tags, meaning something different or different tags
meaning the same. For example, according to the granularity example above, NN is a common
noun in STTS but a non-plural common noun in terms of the Penn Treebank tagset.

http://www.isocat.org/
http://www.isocat.org/

Resource annotations

41

2.3. Handling different concepts: issues in
transferring annotation schemes

While generic representation formats allow for an exchange of annotated resources and data
category specifications help relating the semantics of single tags, much more needs to be
considered when one annotation should be completely transformed into another one which relies
on a different annotation scheme. This usually comes at the cost of either loosing information
or being forced to generate new information.

A prominent example is the conversion from constituency-based into dependency-based syntax.
While on the one hand some information may potentionally be lost in the process, on the
other hand the heads in dependency-based annotation have to be explicitly specified in the
transformation. As they cannot always be clearly identified, e.g. in English noun phrases
containing compounds, additional procedures are needed. Head identification can then be
conducted manually or by utilizing heuristics, see [Yamada/Matsumoto 2003], [Collins 1997],
[Magerman 1994]. A heuristic approach may add errors to the annotation. However, as such
conversions are often done in terms of shared tasks or statistical parsing approaches, a large
amount of data is needed, which makes a manual approach rather impractical.

Another approach to large-scale mapping of annotation schemes considers ontologies of
annotations such as in [Chiarcos 2008]. The ontologies again can be used to link to data category
registries, e.g. ISOcat, see [Chiarcos 2010].

3. Recommendations
In this section only a few very general recommendations can be given, as the decision how to
annotate a resource or which annotation to use highly depends on the data, annotators, available
tools and on the task at hand.

The most general but very important recommendation is to provide metadata for each
annotation of a resource. For already existing resources, not all of the relevant information
might still be known or can be reconstructed, but as much as possible of the following
information should be provided together with the annotation:

• information on how the annotation was created, i.e., manually, semi-automatically or
automatically,

• the annotation guidelines, in case of a manual or semi-automatic annotation,

• the information which tools and tool versions have been applied in an automatic or semi-
automatic annotation,

• the tagset and the explanations of the tags, preferrably linked to a data category registry such
as ISOcat,

• information about the quality of the annotations, e.g. inter-annotator agreement or scores of
automatic processing tools, when applied to gold standards,

• explicit dependencies, e.g., if an annotation relies on other annotation layers or a specific
version of the primary data,

• version information that identifies the existing annotation and allows for differentiation of
versions

Resource annotations

42

When creating a new set of annotations, it is also recommended to opt for sustainability and
reusability, for example by choosing a state-of-the-art representation format and a common
encoding such as UTF-8 for textual data. It is also recommended to choose a fine-grained basic
segmentation that fits the annotation but also allows for other annotations to build on the same
segmentation layer.

43

Chapter 4. Access to resources and
tools – technical and legal issues

Erik Ketzan, IDS Mannheim
Ingmar Schuster, Universität Leipzig

editorial note

This chapter is currently being revised. Further information will be added.

In this chapter we will deal with legal and directly related technical issues of accessing language
resources. You will learn how to access or obtain a resource once you have discoverd it, e.g.
via the Virtual language observatory (see Section 7, “Aggregation”).

Whether you are allowed to access a particular resource and what you are allowed to do with it
depends on both your role in the academic system or elsewhere and on attributes of the resource
which you want to obtain. Your rights with regard to a particular resource might be more or less
restricted depending on your affiliation to a certain institution and your role in this institution
(professor, student, fellow etc.). It might also be restricted by the attributes of the resource
itself, in particular the restrictions that the owner or author of such a resource attributes to it.
Even if you are at the “right” institution and in the “right” position, you might be allowed to use
a resource personally, for your research, but not be allowed to change or redistribute it. You
might not be allowed to use the resource (e.g. a corpus) as a whole, but you might be allowed
to use a derivative work, e.g. a wordlist. The former aspects are dealt with in more detail in
Section 1, “Single Sign-on access to the CLARIN-D infrastructure”, where we describe the
CLARIN-D policies and schemes for the technical access of distributed resources. The latter
aspect, i.e. legal and ethical restriction which are attributed to resources and their use, is dealt
with in Section 2, “Legal Issues”.

1. Single Sign-on access to the CLARIN-
D infrastructure

The single sign-on (SSO) infrastructure enables CLARIN-D users to access electronic resources
from several institutions without applying for a large number of individual logins and the need to
administer these logins. A single username/password combination, usually provided by the users
home institution, makes sure that the scientific community gains access to certain distributed
resources while the general public does not.

This is especially useful in the case of data with legal restrictions. These can include privacy
issues in the case of experimental data from psycholinguistic experiments or copyright
restrictions in the case of corpus and computational linguistics, ancient history, archaeology
and other fields of research. In case a CLARIN-D user wants to grant others access to legally
restricted resources, the SSO infrastructure will be of great use as well. Even the case where
only certain groups in the scientific community are legally allowed to access a resource are
handled by the SSO infrastructure. If for example participants in a psycholinguistic experiment
agreed to have their data shared with PhD candidates and researchers, but not undergraduate
students, the SSO infrastructure can ensure this legal restriction is enforced.

Access to resources and tools –
technical and legal issues

44

1.1. Gaining access to a resource
To gain access to resources, the CLARIN-D user's home institution has to maintain an identity
provider (IdP) that stores username/password combinations (or other means of authentication
information used with smartcards etc.) as well as additional attributes about a user. Most
often this will be the Shibboleth [http://shibboleth.net/] software with attribute representation
using SAML [http://saml.xml.org/] (security assertion markup language). The set of attributes
typically comprises the affiliation status within the institution, email address or an anonymized
unique identifier. To learn whether an institution runs an IdP and get their login information,
users should ask local IT services.

In case the CLARIN-D user's home institution does not run a SAML IdP and will not be
able to do so in the mid term, CLARIN-D has a fallback solution. Users can register with the
CLARIN IdP [http://www.clarin.eu/page/3398] to access resources until their home institution
has deployed their own IdP.

Once login information is provided either from a home institution or from the CLARIN IdP
fallback solution, resources protected by the SSO infrastructure can be accessed. If the user
is not legally allowed to access a resource (e.g. because the user is an undergraduate student
while the resource can be viewed only by senior researchers) the hosting institution can deny
access even for correct authentifications.

1.2. Granting access to a resources
To protect resources that are distributed using the SSO infrastructure, the CLARIN-D user's
home institution has to run a SAML service provider. A service provider (SP) can be configured
according to the conditions which qualify a person to view a resource. These could be their
home insitution (e.g. researchers and undergraduates from University A can access the resource,
undergraduates from University B cannot), the status within their institution (e.g. undergraduate
student, senior researcher), or some other criteria. In the future, access can even be restricted to
particular users. To learn whether an institution runs an SP and for steps to protect resources,
users should ask their local IT service.

In case the CLARIN-D user's home institution does not run a SAML SP and will not be able
to do so in the mid term, CLARIN-D centers can be contacted to explore the possibility of
hosting and protecting resources with the server infrastructure they provide.

1.3. Technical details of the single sign-on
infrastructure

The IdP and SP of an institution are expected to be part of the SAML federation built by the
national research infrastructure organization. In Germany this is the Deutsches Forschungsnetz
(DFN) and the DFN-AAI. It might make sense to additionally deploy a discovery service (DS)
which assists users in choosing an appropriate IdP. Although the central CLARIN DS [http://
www.clarin.eu/page/3496] can be used a DS at the home instituation will come in handy in
case the central service fails or has a malfunction.

Figure 4.1, “Authentication sequence” shows the communication flow running in the
background when a user authenticates to access a resource. When a user request a resource
from the SP, it responds with a list of accepted IdPs in the form of a DS. The user selects her
home institution and authenticates against the home institution's IdP. If the authentication is

http://shibboleth.net/
http://shibboleth.net/
http://saml.xml.org/
http://saml.xml.org/
http://www.clarin.eu/page/3398
http://www.clarin.eu/page/3398
http://www.clarin.eu/page/3496
http://www.clarin.eu/page/3496
http://www.clarin.eu/page/3496

Access to resources and tools –
technical and legal issues

45

successful, the IdP tells the SP so and the resource can be accessed (provided the user authorized
to use this resource).

Figure 4.1. Authentication sequence

2. Legal Issues
Both developers and users of CLARIN-D must contend with a variety of legal issues and
challenges. The overriding message for now is that everyone should make legal decisions in
communication with their institutions, directors, institutional lawyers, and the CLARIN-D legal
help desk.

The goal of the legal help desk is to provide useful legal information to scientists so that they and
their institutes may make better informed decisions. The help desk is constantly updating it's
legal information platform [http://de.clarin.eu/en/training-helpdesk/legal-helpdesk.html] that
serves as an evolving best practices guide for researchers and developers. It covers issues relating
to licenses, legal implications for data collection (e.g. speech, text, etc.), legal issues for resource
creation (building corpora from various works, including online texts and online forums), and
legal issues for tools (e.g. can I have them run in a data center?).

Additionally, the legal help desk provides extensive written memos, plus email and telephone
support, on these and other cutting-edge issues in copyright, privacy law, and other areas that
affect language technology.

Contact the legal help desk by email via its staff at:

• Erik Ketzan mailto:ketzan@ids-mannheim.de

• Pawel Kamocki mailto:kamocki@ids-mannheim.de

http://de.clarin.eu/en/training-helpdesk/legal-helpdesk.html
http://de.clarin.eu/en/training-helpdesk/legal-helpdesk.html
mailto:ketzan@ids-mannheim.de?
mailto:kamocki@ids-mannheim.de?

46

Chapter 5. Quality assurance
Heike Zinsmeister, Universität Stuttgart
One important goal of CLARIN-D is to support the reuse of language resources, in particular
corpora, lexical resources and tools. Quality assurance is an essential pre-requisite for the reuse
of resources. What does (high) quality mean with respect to to language resources? First of all,
it means that resources are described in a way that the users know what to expect from them,
so that they can judge whether a particular resource is suitable for their purposes. The answer
to the question, what to expect from a resource, touches several domains discussed thoroughly
in other chapters of this book, most notably in Chapter 2, Metadata and Chapter 3, Resource
annotations. In this chapter, we will mainly concentrate on the issue of inherent quality of a
resource in terms of well-formedness, (linguistic) adequacy and consistency. After that we will
conclude with a short section considering metadata.

1. Aspects of the quality of resources
1.1. Well-formedness and schema compliance

Corpora and lexical resources are considered well-formed if they conform to a particular
defined format. This does not refer to linguistic concepts but the general document grammar
as specified, for example, in an XML document type definition (DTD) or schema. The schema
determines the structure of the document in terms of eligible markup. If an XML document
conforms to such a specification, it is said to be valid with regard to this DTD or schema.
One method of quality assurance is to make any such a specification available together with
the resource.

1.2. Adequacy and consistency
A resource is adequate only with respect to a particular theory or a particular application. It is
therefore essential to provide information about these. In the case of the linguistic annotation
of corpora – and also to a certain extent for lexical resources – this is normally done by means
of detailed guidelines that specify the tagset and define the (linguistic) concepts on which the
tagset relies. Ideally, the guidelines also provide linguistic tests that human annotators can apply,
and discussions of problematic cases, which make the annotation decisions comprehensible.

With respect to annotated resources, consistency “[…] means that the same linguistic
phenomena are annotated in the same way, and similar or related phenomena must receive
annotations that represent their similarity or relatedness if possible” [Zinsmeister et al. 2008,
page 764]. Consistency is undermined by two major factors: ambiguity and vagueness in the
data, on the one hand, and errors made by annotators, on the other hand. Errors made by
annotation tools normally are of a consistent nature.

One should be aware that any annotation contains errors. In addition to errors performed by
human annotators basically any tool which makes decisions on how to annotate a resource
will make some mistakes and analyze certain instances of the data inappropriately. Therefore,
the expectation is that some sort of evaluation of the annotation quality is provided together
with the resource. For automatic annotations tools this quality information can be based on
evaluating the tools on some gold standard – a resource that has been approved to be adequately
annotated – and report standardized scores such as precision, recall, and F-measure (or other
task-related measures as developed in shared tasks such as the CoNLL shared task initiative

http://ifarm.nl/signll/conll/

Quality assurance

47

[http://ifarm.nl/signll/conll/]. Nevertheless, one has to keep in mind, that also gold standards
contain debatable decisions. Each processing step in course of creating a corpus is a case of
interpretation. Even transcribing non-digitized texts is subject to interpretation if the quality
of the master copy is poor, as it is sometimes the case with historical data, or if an originally
hand-written scripts is unreadable.

For manual annotations it is recommended to let more than one annotator work on the same part
of the result, calculating the inter-annotator agreement afterwards [Artstein/Poesio 2008]. The
same holds for manual transcription of non-digitized text. In Digital Humanities, it is standard to
employ the double-keying method in which two operators create two independent transcriptions,
which are subsequently compared, see [Geyken et al. 2011].

From results of inter-annotator agreement, conclusions can be drawn on the ambiguity of
either the guidelines, see [Zinsmeister et al. 2008], or the phenomenon to be annotated. The
guidelines can be specified in some sort of bootstrapping approach, thereby also changing the
tagsets, when the results of different annotators imply that two categories can not be clearly
differentiated.

Next to trying to improve tools in inspecting their results, or by training them on tailored
resources and adapting the features they use, there are also some mechanisms working on the
annotated resources. For example an automatic processing software to find inconsistencies in
text corpora taking part-of-speech tagging, constituent-based and dependency-based syntactic
annotations into account has been developed within the DECCA project [http://decca.osu.edu/]
[Boyd et al. 2008].

1.3. Metadata
All metadata describe the resource they belong to in some way or other and contribute to qualify
it for reuse.

For assessing the inherent quality of a resource in particular it is relevant that the metadata keeps
record of all processing steps the resource has undergone. This includes information about the
method applied (e.g., in terms of guidelines) and the tools used. For all manual annotation
steps, including transcription and correction, the metadata should provide information about
inter-annotator agreement to specify the reliability of the resource as requested in Section 1.2,
“Adequacy and consistency”. In the case that the resource is a tool itself, the metadata ideally
also include gold standard evaluation or shared-task results for the same purpose. The latter is
not yet part of standard metadata sets. Very often this kind of consistency and performance
information is only indirectly provided in terms of reference to a publication, which includes
a report on these measures. However, providing a reference to a publication on the resource is
in itself part of high-quality metadata. It equips the user with a standard reference to be cited
when the resource is used.

High-quality metadata for tools will specify the requirements on the input format of the data
the tool is applied to, and it will also inform about the output format. In a similar vein, metadata
for corpora and lexical resources might recommend tools that can be used to query, visualize
or otherwise process the resource – if it is developed in a framework that offers such tools.

2. Recommendations
Resource providers should release the schema(ta) which formally describe(s) the format of
their resource together with the resource itself. The formal account is ideally accompanied by

http://ifarm.nl/signll/conll/
http://decca.osu.edu/
http://decca.osu.edu/

Quality assurance

48

an informal description of the format or refers to well-known standards and practices (e.g. in
the case that TEI is used).

Resource providers should add a description of a typical use of of the range of uses which the
resource has been used for or is usable for.

Resource providers should be as explicit as possible with respect to potential errors and the
expected rate of such errors in their resource. Hints to regular patterns of error might also be
useful for the potential users. For example, if an automatically part-of-speech annotated corpus
is known to not well distinguish two categories which are distributionally similar, a user can
decide to ignore this distinction altogether and map both classes into one more general category.

Resource providers should describe the applied methods in the case of manual annotation
of a result, e.g. how many annotators, the annotation manual used, rate of inter-annotator
agreement, resolving methods in the case of disagremment etc.

Users of a resource should be as clear as possible about what they are looking for. If they are
looking for a resource, they should consider

• whether a large set of data wich potential errors is preferred, or a small data set which is
as accurate as possible;

• whether an annotation with high granularity (i.e. many categories) and many potentional
errors is preferred or a coarse-grained annotation with a high rate of annotation accuracy.

Users of a resource should check whether the accompanying documentation, schema etc. meets
their information needs. If this is not the case, they should come back to the resource provider
or the distributor with a precise request for additional information.

Users of resources should take some time to find and compare different rescources with respect
to their specific requirements.

Part II. Linguistic resources and tools

50

Table of Contents
6. Types of resources .. 51

1. General recommendations .. 51
2. Text Corpora .. 52

2.1. Background .. 52
2.2. Text format .. 56
2.3. Metadata ... 61
2.4. Summary and Recommendations ... 61

3. Multimodal corpora ... 61
3.1. Examples of possible modes within corpora .. 62
3.2. Some background on audiovisual data formats 62
3.3. Recommendations .. 64

4. Lexical resources .. 65
4.1. Introduction ... 65
4.2. Common formats ... 66
4.3. Formats endorsed by CLARIN-D .. 71

7. Linguistic tools ... 73
1. Hierarchies of linguistic tools ... 73
2. Automatic and manual analysis tools ... 75
3. Technical issues in linguistic tool management ... 77
4. Automatic segmentation and annotation tools ... 77

4.1. Sentence splitters .. 78
4.2. Tokenizers ... 79
4.3. Part-of-speech taggers .. 81
4.4. Morphological analyzers and lemmatizers ... 82
4.5. Syntax ... 86
4.6. Word sense disambiguation (WSD) .. 90
4.7. Coreference resolution and anaphora .. 90
4.8. Named entity recognition (NER) ... 90
4.9. Sentence and word aligners ... 91

5. Manual annotation and analysis tools .. 92
5.1. Manual annotation tools .. 92
5.2. Annotated corpus access tools ... 93

6. Multimedia tools ... 93
7. Recommendations for CLARIN-D tool designers ... 95

8. Web services: Accessing and using linguistic tools .. 96
1. Web Services .. 96
2. Service-oriented architectures ... 98
3. WebLicht – A service-oriented architecture for linguistic resources and tools 98

3.1. Tool chains .. 99
3.2. Interoperability and the Text Corpus Format 100
3.3. Visualization .. 101
3.4. Metadata .. 101
3.5. Security ... 101

4. WebLicht usage scenarios .. 102
4.1. Quick annotation .. 102
4.2. Statistics .. 111
4.3. Geovisualization ... 113

5. Integrating existing linguistic tools into WebLicht .. 114

51

Chapter 6. Types of resources
Axel Herold, BBAW Berlin
In the following sections we will provide a brief overview of the most commonly encountered
types of linguistic resources ranging from text corpora and multimodal corpora to lexical
resources. In Chapter 7, Linguistic tools a broad range of automatic segmentation, annotation
and analysis tools is presented that provide working implementations of the methods already
touched upon in Part I, “Basic concepts” and for many tasks beyond. Finally, in Chapter 8,
Web services: Accessing and using linguistic tools we demonstrate how resources and tools can
be dynamically connected in general and within the CLARIN-D infrastructure in particular.

We assume that readers are already familiar with basic data modeling and representation
standards such as the extensible markup language (XML) [http://www.w3.org/XML/] or
different character encodings representing Unicode [http://www.unicode.org/] or older legacy
encodings. These standards are of great importance well beyond the linguistic domain and not
covered in this user guide.

1. General recommendations
For a successful technical integration of linguistic resources and tools into the CLARIN-D
infrastructure the following requirements must be met:

• All data should be stored in one of a limited set of data formats. Throughout this user guide
we discuss all data formats available within the CLARIN-D infrastructure. A list of data
formats and their status within the European CLARIN project can be found on the CLARIN
EU website [http://www.clarin.eu/recommendations].

• All tools and resources have to be associated with persistent identifiers.

• Tools and resources have to be associated with comprehensive metadata. All data categories
used in the resource itself or in its metadata description should map to a data category in
ISOcat, or other CLARIN supported data category registries, like the ISO-3166 registry for
country codes [ISO 3166-1:2006], [ISO 3166-2:2007]. In certain cases, entries in RELcat
(which is still under development) may also be used. See Chapter 2, Metadata for details.

• A formal description of the resource's underlying data model must be provided. It serves as
a means of formal documentation of the resource. It will also be used for formal validation
if the resource is processed by a CLARIN-D member.

See Section 1.1, “Well-formedness and schema compliance” for a detailed account on
formal descriptions for validation. In the case of XML based resources XSD, Relax NG
schemata and Schematron rules are preferred over document type definitions (DTD). Formal
descriptions should be documented and should contain links to a data category registry
for all datatypes and their values. Closed sets of value data categories must be explicitly
enumerated.

• An informal documentation of the resource targeted for the CLARIN-D user community
must be provided. In the simplest case this might be an already existing freely available
electronic article or whitepaper. The documentation should be provided in an English
version and preferably also in the subject language(s) of the resource. Versions in additional
languages are welcome, too.

http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.unicode.org/
http://www.unicode.org/
http://www.clarin.eu/recommendations
http://www.clarin.eu/recommendations
http://www.clarin.eu/recommendations

Types of resources

52

• In the case of resources in formats that are not supported by CLARIN-D, resource providers
are encouraged to contact the CLARIN-D technical help desk [http://www.clarin-d.de/en/
training-helpdesk/technical-helpdesk.html] to find support in transforming their resource
into a CLARIN-D compatible format.

Integration of some resources and tools may lead to additional requirements. These are
discussed in the specific section on the resource or tool type.

2. Text Corpora
Alexander Geyken, Susanne Haaf, BBAW Berlin
Marc Kupietz, Harald Lüngen, Andreas Witt, IDS Mannheim

This section addresses corpus linguists and corpus technologists who would either like to
provide existing text corpora to the CLARIN-D infrastructure or want to develop new corpora
for the CLARIN-D infrastructure. The central part of this section explains the recommended
format for CLARIN-D compliant text corpora on two levels, text data and metadata, and
motivates the reasons for this decision. In addition, a background chapter introduces to corpus
linguists or other scholars interested in corpora how such resources are addressed by the
CLARIN-D-infrastructure.

Why contribute to the CLARIN-D infrastructure? Users, who provide the CLARIN-D-
infrastructure with CLARIN-D compliant text corpora, can benefit from the following features:

• CLARIN-D compliant metadata can be harvested and are therefore searchable throughout
the CLARIN-D infrastructure. The benefit is: your data are more visible and easier to find for
other researchers and therefore more widely used. See Chapter 2, Metadata for more details.

• CLARIN-D compliant texts that are provided with sufficient intellectual property rights
(IPR) can be stored and maintained in the repositories of CLARIN-D service centers. The
benefit is: CLARIN-D handles the distribution and access to your data while respecting their
particular IPR situation.

• CLARIN-D compliant corpora (i.e. their text structure) are interoperable in the CLARIN-
D infrastructure; i.e. they are fully searchable, several views (HTML, TEI, text) can be
generated automatically at the CLARIN-D service centers, and third those corpora can be
further processed by the CLARIN-D tool chains (see Chapter 8, Web services: Accessing
and using linguistic tools). The benefit is: you are able to receive support for the (further)
linguistic analysis of your data, including a ready to use box of tools. You can mix and merge
your data more easily with data which are provided by someone else.

2.1. Background
Readers who are familiar with corpus typology, corpus compilation, and corpus quality can
skip this section and go directly to Section 2.2, “Text format”. The following section gives a
brief overview and is not intended to replace introductory works like [McEnery/Wilson 2001]
for English and [Lemnitzer/Zinsmeister 2010] and [Perkuhn et al. 2012] for German. We also
recommend to take a look at the Handbook of linguistics and communication science, vol. 2,
Corpus linguistics [Lüdeling/Kytö 2009].

http://www.clarin-d.de/en/training-helpdesk/technical-helpdesk.html
http://www.clarin-d.de/en/training-helpdesk/technical-helpdesk.html
http://www.clarin-d.de/en/training-helpdesk/technical-helpdesk.html

Types of resources

53

2.1.1. Corpus typology
A common characterization of the term corpus is given by John Sinclair, a pioneer of corpus
linguistics: “A corpus is a collection of naturally-occurring language text, chosen to characterize
a state or variety of a language” [Sinclair 1991, page 171]. The terms corpus, text corpus and
electronic (text) corpus are used interchangeably in this section to refer to a collection of texts
in machine-readable form.

Corpora of written text consist of several corpus items (for a discussion about the size of a
corpus see [Sinclair 2005]). Each corpus item consists either of text samples (such as the Bonner
Frühneuhochdeutschkorpus [http://www.korpora.org/Fnhd/]) or an entire document (such as
most of the corpora of the IDS, the DWDS-Kernkorpus or the Deutsches Textarchiv [http://
www.deutschestextarchiv.de/] (DTA, German Text Archive), in a machine-readable form,
annotated on various linguistic levels and enhanced with metadata (see Chapter 2, Metadata).
The primary data is a transcription of the raw data (or source data, e.g. when the raw data is a
non-digital asset, such as a book). These primary data can be annotated on different linguistic
levels (see Chapter 3, Resource annotations for a detailed discussion about annotations and
Chapter 1, Concepts and data categories for an account on data categories) resulting in a set
of related files. Usually each single annotation layer of the primary data results in a new XML
instance which is stored in a separate but related file. Apart from the annotation files, metadata
files have to be included as well.

One commonly distinguishes the following types of text corpora with regard to data collection
and language modeling:

• balanced reference corpora, i.e. text collections that are balanced over text genres such as the
British National Corpus [http://www.natcorp.ox.ac.uk/] (BNC) or the DWDS-Kernkorpus
[http://www.dwds.de/] [Geyken 2007],

• opportunistic corpora, and corpus archives that are designed to act as primordial samples for
user defined virtual corpora that are balanced or representative with respect to the intended
basic population such as the Deutsches Referenzkorpus [http://www.ids-mannheim.de/kl/
projekte/korpora/] (DeReKo, [Kupietz et al. 2010]),

• closed corpora, i.e. text collections that provide the entirety of texts from a former
language period or a single author, if this amount is comparatively small and strictly
limited such as for the Old German texts in Deutsch Diachron Digital (DDD) [http://
www.deutschdiachrondigital.de/]).

• open corpora, i.e. text collections corresponding to well documented subsets of text taken
from the period of time or discourse. As opposed to closed corpora open corpora are
compiled if the amount of text for a certain period of time or for a certain discourse is too
large to be presented in its entirety.

• specialized corpora, i.e. text collections containing a specific linguistic variety or
sublanguage (e.g. a discourse, a certain text type) whereas general corpora aim at providing
a representative section of the entire language material of a specific period of time (e.g. Old/
Middle/Early New/New High German).

One may also find the terms synchronic and diachronic corpora: synchronic corpora represent
the language used at a specific point in time, whereas diachronic corpora document the
evolution of language over a certain period of time.

http://www.korpora.org/Fnhd/
http://www.korpora.org/Fnhd/
http://www.korpora.org/Fnhd/
http://www.deutschestextarchiv.de/
http://www.deutschestextarchiv.de/
http://www.deutschestextarchiv.de/
http://www.natcorp.ox.ac.uk/
http://www.natcorp.ox.ac.uk/
http://www.dwds.de/
http://www.dwds.de/
http://www.ids-mannheim.de/kl/projekte/korpora/
http://www.ids-mannheim.de/kl/projekte/korpora/
http://www.ids-mannheim.de/kl/projekte/korpora/
http://www.deutschdiachrondigital.de/
http://www.deutschdiachrondigital.de/
http://www.deutschdiachrondigital.de/

Types of resources

54

2.1.2. Corpus compilation
This section addresses the question of data compilation and distinguishes between capturing
data from non-digital and from digital sources.

Capturing data from non-digital sources

The sources on which the recognition of corpus texts is based may differ. In some cases, such
text recognition sources are the original works (printed works or manuscripts) themselves.
Nevertheless, for practical reasons, transcriptions will generally be based on some kind of copy
from the original whereas the original sources are only consulted in case of doubt. Copies may
be paper copies, microfiches or microfilms. In most cases, however, they will be available in
a digital format. The best case scenario (when dealing with copies of text sources) would be
to base the transcription on a coloured image with high resolution (scan or photography) taken
directly from the original, which should be available in a lossless image format (e.g. TIFF).
The image quality and therefore the text recognition accuracy decreases the less of the named
conditions apply, e.g.

• in case the source images are grey or bitonal scans,

• in case the source images are based on microfilms or microfiches, or,

• in case of insufficient image resolution of the source images.

High quality transcriptions of the text are a necessary prerequisite for the correctness and
completeness of retrieval results. There are different methods of text recognition:

Optical character recognition (OCR)
With this method texts are recognized by optical character recognition software. While
OCR may be suitable for modern texts in Antiqua performance decreases considerably with
the increasing age of the text sources. Therefore, texts have to be proofread and manually
corrected several times in order to eliminate recognition errors. The performance of the
OCR may also be influenced positively by preparing the scanned images in advance, e.g.
by labeling zones on a page with information about whether they contain text or images,
whether text is written in columns etc.

In addition, OCR software may be trained for a particular kind of text source (e.g. sources
printed at the same time and by the same printer). With training, OCR performance may
be increased considerably. However, since training is quite costly, it is only practicable if
there is a considerable amount of homogeneous corpus texts to be transcribed. It is too
time consuming if the texts are of varying typefaces and structures [Tanner et al. 2009],
[Nartker et al. 2003], [Furrer/Volk 2011], [Holley 2009].

Manual transcription
Manual transcription by one person with several proofreading run-throughs: With this
method high accuracy rates may be achieved, especially if there are different correctors
who are trained to work with historical texts. However, this method is time consuming,
as texts have to be transcribed very carefully and corrected several times, in order to get
good accuracy rates.

Double keying:
The double keying method requires two typists transcribing the same text, thus producing
two independent versions of a text transcription. These two versions are then compared
to one another and differences are evaluated by a third person. Given, that two typists are

Types of resources

55

unlikely to make the same mistakes, this method is highly accurate even for older historical
texts. However, this transcription method is quite costly as well, since two versions of a
text have to be produced. Training of the typists might improve the transcription accuracy
especially for older texts with difficult typefaces [Haaf et al. forthcoming].

For text recognition, guidelines should be defined to regulate how to deal with special
phenomena within the source text, where to apply normalizations or, in which cases of
doubt to follow the source text. The text recognition guidelines of the DTA project [http://
www.deutschestextarchiv.de/doku/richtlinien] (in German) are a good example.

Capturing data from digital sources

Written language data may already be digitized and come in different formats, e.g. as plain text,
office software documents or in PDF files. If so, text data has to be converted into a common
standardised format, which allows for further processing.

Spoken language lies in the intersection of written corpora and multimodal corpora since their
transcriptions are provided in a written form whereas their underlying data correspond to digital
audio or video recordings. For more technical details see Section 3, “Multimodal corpora”.

2.1.3. Corpus quality and quality control
Corpus quality can be assessed on two levels: transcription quality and correctness of
annotations. Both should be dealt with in the data caption phase rather than in the correction
phase. One example for a problem that might arise during data capturing are similar letters,
where each interpretation leads to a correct word. This is a typical error that is very hard to
detect after the transcription phase. Some instances of common errors of this class are shown
in Figure 6.1, “Transcription errors leading to valid word forms”.

Figure 6.1. Transcription errors leading to valid word forms

“Lauſen” (to delouse) vs. “Laufen” (to run), in: Johann Christoph Friedrich Guts Muths: Spiele
zur Übung und Erholung des Körpers und Geistes. Schnepfenthal, 1796, IMG 270 [http://
www.deutschestextarchiv.de/gutsmuths_spiele_1796/270]

“Haide” (heath) vs. “Halde” (dump), in: August von Platen: Der romantische Ödipus Stuttgart
u. a., 1829, IMG 10 [http://www.deutschestextarchiv.de/platen_oedipus_1829/10]

“schweigen” (to remain silent) vs. “schwelgen” (to wallow), in: Friedrich Wilhelm
Gotter: Die Erbschleicher. Leipzig, 1789, IMG 78 [http://www.deutschestextarchiv.de/
gotter_erbschleicher_1789/78]

http://www.deutschestextarchiv.de/doku/richtlinien
http://www.deutschestextarchiv.de/doku/richtlinien
http://www.deutschestextarchiv.de/doku/richtlinien
http://www.deutschestextarchiv.de/gutsmuths_spiele_1796/270
http://www.deutschestextarchiv.de/gutsmuths_spiele_1796/270
http://www.deutschestextarchiv.de/gutsmuths_spiele_1796/270
http://www.deutschestextarchiv.de/gutsmuths_spiele_1796/270
http://www.deutschestextarchiv.de/platen_oedipus_1829/10
http://www.deutschestextarchiv.de/platen_oedipus_1829/10
http://www.deutschestextarchiv.de/platen_oedipus_1829/10
http://www.deutschestextarchiv.de/gotter_erbschleicher_1789/78
http://www.deutschestextarchiv.de/gotter_erbschleicher_1789/78
http://www.deutschestextarchiv.de/gotter_erbschleicher_1789/78
http://www.deutschestextarchiv.de/gotter_erbschleicher_1789/78

Types of resources

56

Similarly, misinterpretations on the annotation level are possible.

The Deutsches Textarchiv provides a detailed workflow of how to deal with possible annotation
problems in the pre-caption phase [http://www.deutschestextarchiv.de/doku/workflow] and of
how detailed transcription guidelines can help to avoid transcription errors.

For more detailed information on quality control issues consult Chapter 5, Quality assurance .

2.2. Text format
TEI-P5 (see Excursus: Text Encoding Initiative – TEI-P5) is the recommended standard to be
used for CLARIN-D. TEI-P5 is a widely used and very flexible standard that is adoptable for a
large variety of text types. Due to this flexibility of the “full” TEI-P5 tag set (tei_all) TEI-
P5-compliant corpora are generally not interoperable per se. For a discussion of some of the
problems arising from this fact see [Unsworth 2011] and [Geyken et al. 2012].

Excursus: Text Encoding Initiative – TEI-P5
For the semantic structuring of texts the TEI, a consortium of international
scholars and researchers founded in 1994 , provides a modular, theory-neutral
annotation tag set accompanied by an elaborated description. The TEI guidelines
are freely available and there is a wide range of tools (both open source and
commercial) that can process TEI-annotated data. All these benefits make the TEI
a good starting point for annotating linguistic corpora. P5, the current version of
the TEI guidelines, was officially released in 2007.

The TEI offers solutions for the structuring of texts, considering as many demands
of digital editions as possible. Corresponding to the purpose of XML the TEI
encoding standard focuses on the semantic rather than the formal structuring of
texts. Text structuring may remain on a rather superficial level or may take place
on a deeper text level and even contain the addition of editorial information as
comments or text critical remarks. The TEI P5 tag set consists of a limited number
of elements, each of which encompasses a selection of specific attributes. On the
level of attribute values only some recommendations are given. Apart from that
users are free to use value names, which they consider to be the most suitable in
their context.

This way, the application of the TEI tagset results in a broad variety of possible
annotations, from which users may chose the most suitable ones for the annotation
of the different and specific phenomena, which occur in the texts they are
dealing with. However, this desirably wide range of annotation solutions leads
to the problem, that for the treatment of one phenomenon different annotation
approaches (each of which is accordant to the TEI) are possible, depending e.g.
on the degree of specificity of the annotation. For instance it is possible to tag the
name of a person with either the element name or the element persName. If
the reading of a character is insecure, it may be annotated with a supplied or
an unclear element. Therefore, projects need to narrow down the TEI tagset
to their specific needs in order to avoid incoherence of annotation and therefore
incompatibility across text collections of their texts on a structural level.

For this purpose it is possible to adjust the TEI schema to the needs of a specific
project. The easiest way to do so is to create an ODD (short for: “one document
does it all”) document, in which the designated adjustments to the TEI schema are
specified. ODD is a special TEI P5 format which allows for customizations of the

http://www.deutschestextarchiv.de/doku/workflow
http://www.deutschestextarchiv.de/doku/workflow
http://www.deutschestextarchiv.de/doku/workflow

Types of resources

57

TEI schema, such as excluding modules, elements, or attributes (element or class
wise) from the schema, or defining particular attribute values. It is also possible
to add new elements to a given tagset.

For the creation of a specific ODD file the web application Roma [http://
www.tei-c.org/Roma/] may be used. Roma helps the user to define the project's
specifications step by step. The resulting ODD file may be saved and, if necessary,
modified further according to chapter 22 of the TEI guidelines [http://www.tei-
c.org/release/doc/tei-p5-doc/en/html/TD.html#TDmodules]. Based on the final
ODD file a schema (RelaxNG, RelaxNG compact, XML Schema etc.) may then
be generated using Roma. The TEI provides a tutorial on how to use Roma [http://
www.tei-c.org/Guidelines/Customization/use_roma.xml].

Note, that the TEI itself offers several specifications of the TEI guidelines
as recommendations for specific annotation purposes [http://www.tei-c.org/
Guidelines/Customization/], due to the fact that there are prototypical phenomena
which should be dealt with in a common standard way, such as TEI-Tite
[http://www.tei-c.org/release/doc/tei-p5-exemplars/html/tei_tite.doc.html], TEI-
Lite [http://www.tei-c.org/Guidelines/Customization/Lite/] or the Best practices
for TEI in Libraries [http://www.tei-c.org/SIG/Libraries/teiinlibraries/main-
driver.html]. For the annotation of German texts which were originally published
in print the DTABf offers a TEI specification, that is suitable for the different
kinds of text structures found in printed texts.

Among the partners of CLARIN-D there are two formats that are widely used for a very large
number of documents: the DTA base format [www.deutschestextarchiv.de/doku/basisformat]
(DTABf) at the BBAW and IDS-XCES at the IDS. A TEI P5 conformant document grammar
for IDS-XCES, called I5, is currently under development [Lüngen/Sperberg-McQueen 2012].
These formats are very likely to be supported in the future since software used by many
thousand scholars is tailored to them. However, both partners intend to unify the formats in the
coming months in such a way that a common TEI-P5 compliant format can be provided for
CLARIN-D. In the meantime the CLARIN-D policy recommends both of the two different but
TEI-P5 compliant schemas with less variation but more semantic control. They are discussed
in more detail below focussing especially on the requirements and benefits for the integration
into the CLARIN-D infrastructure.

As a consequence of the remarks made above, there are two main levels of compatibility with
the CLARIN-D infrastructure:

1. Text corpora that are compliant with “full” TEI-P5: Those corpora will be interoperable
with other resources in the CLARIN-D infrastructure on four sub-levels:

a. CLARIN-D compliant Metadata (CMDI profiles) can be generated from TEI-P5 headers
(even though they might be underspecified).

b. Corpora can be sorted in the repository of the CLARIN service centers of either BBAW
or IDS.

c. Corpora formats can be transformed into the TCF format (see Section 3.2,
“Interoperability and the Text Corpus Format”), hence postprocessing of these
documents in any of the web service based CLARIN-D processing pipelines (Weblicht)
is possible.

d. Texts in TEI-P5 are searchable via the federated search component of CLARIN-D.

http://www.tei-c.org/Roma/
http://www.tei-c.org/Roma/
http://www.tei-c.org/Roma/
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/TD.html#TDmodules
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/TD.html#TDmodules
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/TD.html#TDmodules
http://www.tei-c.org/Guidelines/Customization/use_roma.xml
http://www.tei-c.org/Guidelines/Customization/use_roma.xml
http://www.tei-c.org/Guidelines/Customization/use_roma.xml
http://www.tei-c.org/Guidelines/Customization/
http://www.tei-c.org/Guidelines/Customization/
http://www.tei-c.org/Guidelines/Customization/
http://www.tei-c.org/Guidelines/Customization/
http://www.tei-c.org/release/doc/tei-p5-exemplars/html/tei_tite.doc.html
http://www.tei-c.org/release/doc/tei-p5-exemplars/html/tei_tite.doc.html
http://www.tei-c.org/Guidelines/Customization/Lite/
http://www.tei-c.org/Guidelines/Customization/Lite/
http://www.tei-c.org/Guidelines/Customization/Lite/
http://www.tei-c.org/SIG/Libraries/teiinlibraries/main-driver.html
http://www.tei-c.org/SIG/Libraries/teiinlibraries/main-driver.html
http://www.tei-c.org/SIG/Libraries/teiinlibraries/main-driver.html
http://www.tei-c.org/SIG/Libraries/teiinlibraries/main-driver.html
www.deutschestextarchiv.de/doku/basisformat
www.deutschestextarchiv.de/doku/basisformat

Types of resources

58

2. Text corpora that are fully compatible with one of the TEI-P5 subsets of CLARIN-D,
namely DTABf or IDS-XCES: In addition to the four levels of interoperability above,
documents in these formats share additional benefits with regard to the CLARIN-D
infrastructure. See the DTA base format (DTABf) and IDS-XCES technical information
in the boxes below for details and a discussion on how deviating TEI-P5 schemas can be
integrated into the recommended schemas.

DTA base format (DTABf)

The DTA base format [http://www.deutschestextarchiv.de/doku/basisformat]
draws on the works of the Deutsches Textarchiv [http://
www.deutschestextarchiv.de/] (DTA) of the BBAW where a large reference
corpus for a large variety of (kinds of) texts is currently compiled. The tagset of
DTABf is completely compliant to the TEI P5 guidelines, i.e. no new elements or
attributes were added to the TEI P5 tagset. It consists of about 80 TEI P5 elements
needed for the basic formal and semantic structuring of the DTA reference
corpus, plus another 25 additional elements used for metadata structuring in
the TEI header. The purpose of DTABf is to gain coherence on the annotation
level (i.e. similar structural phenomena should be annotated similarly), given the
heterogeneity of text material as published in the DTA over time (1650–1900) and
text types (fiction, functional, and scientific texts).

DTABf attempts to meet the criteria of interoperability mentioned by Unsworth
in that it “focuses on non-controversial structural aspects of the text and on
establishing a high quality transcription of that text” [Unsworth 2011]. Therefore,
the goal of DTABf format is to provide as much expressiveness as necessary by
being as precise as possible. For example DTABf is restrictive not only considering
the selection of TEI elements but also with respect to attribute-value pairs and
allows only a limited set of values for a given attribute. Unlike initiatives such
as TEI-A [Pytlik Zillig 2009] the goal of DTABf is not to build a schema that
validates as many cross collections as possible but to convert resources from other
corpora so as to keep the structural variation as small as possible.

The necessity of a common standardized format for the annotation of printed
texts seem to be opposed to the fact, that different projects usually have different
needs as for how a corpus may be exploited. Therefore annotation practices
vary according to the variable queries on a certain corpus. This problem may
be addressed by defining different levels of text annotation, that represent
different text structuring depths. The TEI recommendations for the encoding of
language corpora [http://www.tei-c.org/release/doc/tei-p5-doc/en/html/CC.html]
foresee four different levels of annotation defining required, recommended,
optional, and proscribed elements.

DTABf consists of such annotation levels, which serve as classes subsuming and
by that categorizing all available DTABf elements:

Required (level 1)
These elements are mandatory for the basic semantic structuring of corpus
texts.

Recommended (level 2)
These elements are recommended for the semantic structuring of corpus texts
and are systematically used in the DTA corpus.

http://www.deutschestextarchiv.de/doku/basisformat
http://www.deutschestextarchiv.de/doku/basisformat
http://www.deutschestextarchiv.de/
http://www.deutschestextarchiv.de/
http://www.deutschestextarchiv.de/
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/CC.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/CC.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/CC.html

Types of resources

59

Optional (level 3)
These elements do not need to be considered for text annotation. Level 3
elements are not (yet) part of the DTA guidelines and are therefore not used
systematically in the texts of the DTA corpus. They are, however, compatible
with the DTA schema.

Proscribed (level 4)
These elements were explicitly excluded from the DTA guidelines. They
should be avoided in favor of the solutions offered in the DTA guidelines.

See the tabular overview of DTABf text elements and their corresponding levels
[http://www.deutschestextarchiv.de/doku/basisformat_table].

DTABf is continuously adapted to the requirements of external corpus projects.
These extensions are mainly community-based. Up to now more than ten
external projects have contributed to the extension of DTABf. For a range
of projects, their TEI based schemas were converted to DTABf [http://
www.deutschestextarchiv.de/dtae], including:

• Blumenbach Online Edition [http://www.blumenbach-online.de/]

• some projects at the Max-Planck-Institut für Bildungsforschung [http://
www.mpib-berlin.mpg.de/de/institut/bibliothek/projekte]

• Dinglers Polytechnisches Journal [http://dinglr.de]

In addition, a CLARIN-D corpus curation project [http://www.clarin-d.de/de/
fachspezifische-arbeitsgruppen/f-ag-1-deutsche-philologie/
kurationsprojekt-1.html] by the F-AG 1 (“Deutsche Philologie”, German
philology) with the project partners BBAW (coordinator), HAB, IDS, and
University of Gießen pursues the goal of converting external corpora, which were
created using many different formats, into DTABf and integrating those corpora
into the CLARIN-D infrastructure. This project started in September 2012. It will
be extensively documented and might serve as an example of good practice for
your own work.

IDS-XCES

IDS-XCES [http://www.ids-mannheim.de/kl/projekte/korpora/textmodell.html]
is an adaptation of the XCES corpus encoding standard [http://www.xces.org/]
(see [Ide et al. 2000]). It has been the format for the semantic and structural
annotation of the texts in the corpus archive of the German Reference Corpus
DEREKO at the Institute for the German Language in Mannheim (IDS) since
2006. The XCES standard had been introduced in 2000 as a re-definition of the
SGML-based corpus encoding standard CES [Ide 1998] in XML. CES, in turn,
had been based on the likewise SGML-based P3 version of the TEI guidelines as
an effort to define a subset of TEI P3 elements and attributes suitable for corpus
annotation.

Subsequently, XCES had not been kept fully compatible with the XML-based
successors of P3, i.e. TEI P4 and P5, so that as of today, it contains a few elements
and attributes not in the TEI P5 guidelines. IDS-XCES is a modified version of
XCES, in which some content models of XCES have been redefined and some

http://www.deutschestextarchiv.de/doku/basisformat_table
http://www.deutschestextarchiv.de/doku/basisformat_table
http://www.deutschestextarchiv.de/dtae
http://www.deutschestextarchiv.de/dtae
http://www.deutschestextarchiv.de/dtae
http://www.deutschestextarchiv.de/dtae
http://www.blumenbach-online.de/
http://www.blumenbach-online.de/
http://www.mpib-berlin.mpg.de/de/institut/bibliothek/projekte
http://www.mpib-berlin.mpg.de/de/institut/bibliothek/projekte
http://www.mpib-berlin.mpg.de/de/institut/bibliothek/projekte
http://dinglr.de
http://dinglr.de
http://www.clarin-d.de/de/fachspezifische-arbeitsgruppen/f-ag-1-deutsche-philologie/kurationsprojekt-1.html
http://www.clarin-d.de/de/fachspezifische-arbeitsgruppen/f-ag-1-deutsche-philologie/kurationsprojekt-1.html
http://www.clarin-d.de/de/fachspezifische-arbeitsgruppen/f-ag-1-deutsche-philologie/kurationsprojekt-1.html
http://www.clarin-d.de/de/fachspezifische-arbeitsgruppen/f-ag-1-deutsche-philologie/kurationsprojekt-1.html
http://www.ids-mannheim.de/kl/projekte/korpora/textmodell.html
http://www.ids-mannheim.de/kl/projekte/korpora/textmodell.html
http://www.xces.org/
http://www.xces.org/

Types of resources

60

new elements and attributes have been introduced according to the needs of the
DEREKO corpus descriptions. In doing so, the additional attributes and elements
and revised content models have been drawn mostly from the TEI P4 and P5
guidelines so that as a result, IDS-XCES is to a large extent compatible with TEI-
P5. Currently, a TEI P5-conformat document grammar for IDS-XCES, dubbed I5,
is being customized, which will be applicable to the existing IDS-XCES annotated
corpora without the need to convert them [Lüngen/Sperberg-McQueen 2012].

IDS-XCES comprises 167 elements and numerous attributes to encode metadata,
in particular all bibliographic metadata, and the features of the corpus and text
structure, including hierarchical structure. One major principle of IDS-XCES
is the tripartite structuring of an archive into corpus, document, and text. In
DEREKO, a corpus for instance comprises all editions of one year of a daily
newspaper and contains a number of documents in the form of the daily editions.
A document, in turn, contains a number of texts, which in the case of newspapers
are the singles articles, commentaries and the like. In IDS-XCES, corpora with
texts of all text types are structured according to this basic scheme.

IDS-XCES is also designed to encode the basic sentence segmentation. Elements
for further linguistic annotations such as part-of-speech tagging, however, are not
incorporated in IDS-XCES. Instead, they should be provided as XML standoff
annotations pointing into the texts marked up in IDS-XCES. This allows for the
provision of any number of concurring linguistic annotations.

IDS-XCES serves as the internal representation format for the corpus access
platform COSMAS II [http://www.ids-mannheim.de/cosmas2/] at the IDS. This
means that texts marked up according to IDS-XCES can be integrated in
COSMAS II and thus be queried and analysed via its web interface. Moreover,
all annotation features of IDS-XCES can potentially be exploited to define virtual
subcorpora, as within DEREKO’s primordial sample design [Kupietz et al. 2010].
The DEREKO corpus archive is used by linguistic researchers at the IDS and
institutions around the world via COSMAS II. With over 5 billion word tokens,
it is the largest archive of contemporary written German. It contains newspaper
articles, scientific texts, fiction, and a wide variety of other text types.

Text corpora compliant to either DTABf or IDS-XCES gain the following benefits:

• Texts can be stored in the repositories of the CLARIN-D service centres.

• Texts are searchable via the search engines and the federated content search interface.

• Texts can be made available through corpus analysis software like COSMAS II (IDS) or
DDC (BBAW).

• (HTML, TEI, text) views for web presentation can be generated automatically at the
CLARIN-D service centres.

• Texts can be converted automatically into TCF (see Section 3.2, “Interoperability and the
Text Corpus Format”), the entry point for the CLARIN-D toolchains (see Chapter 8, Web
services: Accessing and using linguistic tools). These conversion routines will be available by
the end of 2012.

• Metadata compliant to the CMDI metadata format can be provided (see Chapter 2,
Metadata).

http://www.ids-mannheim.de/cosmas2/
http://www.ids-mannheim.de/cosmas2/
http://www.ids-mannheim.de/cosmas2/

Types of resources

61

A full list of the commonalities and differences between IDS-XCES and DTABf as well as steps
towards their unification is in preparation and will be made publicly available after completion.

There are types of corpora which are not covered by the TEI schemas described above,
cases where even the TEI guidelines do not suffice, namely texts of computer-mediated
communication (CMC). CMC is a genre which falls in between written and spoken
communication. Some features of it are not yet expressed appropriately in the TEI guidelines.
This concerns the macrostructural level of the “documents” (i.e. threads and logfiles) as well
as microstructural elements (e.g. emoticons and addressing terms). In such a case we suggest
extensions and modifications to the TEI guidelines. See [Beißwenger et al. 2012] for a detailed
account of CMC spefic TEI customization.

2.3. Metadata
The recommended metadata format is CMDI. Data in CMDI format can be directly made
available through the CLARIN-D infrastructure. For a detailed description of the CMDI
framework see Chapter 2, Metadata.

Editing tools provided within CLARIN help with the specification of CMDI-formats that are
suitable for the necessities of certain projects. However, to reduce the effort of preparing new
CMDI formats for individual projects, it is planned to provide services that help with the
provision of CMDI metadata for texts encoded according to DTABf or IDS-XCES. Future
plans foresee the provision of a web form within CLARIN-D, where metadata can be recorded
and subsequently exported in a structured way according to the DTABf and IDS-XCES
metadata headers, or CMDI. In addition, conversion routines will be provided, which allow for
the conversion of DTABf and IDS-XCES metadata into CMDI.

2.4. Summary and Recommendations
For a suitable integration into the CLARIN-D infrastructure text corpora should be provided
with an explicit statement of intellectual property rights and terms and restrictions of usage.
This is typically documented through a license. See Chapter 4, Access to resources and tools –
technical and legal issues for more information on legal aspects in corpus distribution.

The annotation of the text structure should be based on the P5 guidelines of the TEI. The
recommended text corpus format is the unified document scheme currently developed within
CLARIN-D. Until the finalization of this annotation scheme we recommend to use either
DTABf or IDS-XCES. For both original formats lossless converters will be supplied.

The use of any of these three formats assures the interoperability of corpus texts on several
levels: full text search, web display of the texts and the possibility to process the texts by the
CLARIN-D tool chain. Some examples of corpora already integrated into the CLARIN-D
infrastructure [http://www.deutschestextarchiv.de/dtae] can be found on the DTA website.

3. Multimodal corpora
Dieter van Uytvanck, MPI for Psycholinguistics Nijmegen

editorial note

This section is currently being rewritten.

http://www.deutschestextarchiv.de/dtae
http://www.deutschestextarchiv.de/dtae
http://www.deutschestextarchiv.de/dtae

Types of resources

62

3.1. Examples of possible modes within corpora
• Audio: Spontaneous conversation, interview with one or more interviewees, experiment

(structured, following a plan), cultural events, celebrations without particular speaker.

• Video: videos corresponding to above listed points, fieldtrip interviews, cultural events
and experiments; sign language, gesture analysis: conversation, story telling, structured
experiment (performing tasks according to some schedule, answering questions).

• Text: transcription, translation, deeper linguistic annotations (describing morphosyntactic
properties, actions in the video, including human interaction, emotions, reactions, comments,
etc.).

• MRI data recorder during an experiment.

• Eye-tracking data – direction of the gaze, pupils’ size, focused area.

• Hand movement – virtual glove recording the position of the hand and all the joints.

• Motion capture data – part or full body with numerous markers attached.

3.2. Some background on audiovisual data
formats

There are no strict standards of audio, video or annotations within the CLARIN-D network.
Each center has developed their standards and solutions with respect to the needs of their
users. Nevertheless, usability of the resources and tools by any other potential users was always
desired. Therefore, popular and open standards are enforced.

When speaking about formats for audiovisual data, one needs to make a distinction between
the container format and the actual encoding of the media streams. The container is used as a
wrapper around one or more streams of audio and/or video data and typically some metadata
about these streams. Many container formats can contain audio and/or video streams in a variety
of encodings, although there are also “single coding formats” that only support one type of
encoding. Examples of container formats are: WAV or AIFF for audio; AVI, Matroska (MKV)
or QuickTime (MOV) for video.

Audio and video streams can be encoded and decoded by means of a “codec”, a piece of
software that can read and write audio or video data according to a certain encoding scheme.
Often these encoding schemes make use of data compression in order to reduce storage or
bandwidth requirements. Data compression can be lossless, i.e. completely reversible such as
in the case of a zip file, or lossy, in which case information is thrown away that can no longer be
recovered. Most audio and video compression algorithms make use of weaknesses of human
perception in order to throw away information that is less noticeable to us.

It depends a lot on the research questions and on the long-term preservation goals whether
lossy compression of audiovisual data is an issue or not. A lot of research questions in
linguistics for example can be answered perfectly well when using mp3-compressed audio. The
question is then whether this data should serve other purposes as well and whether it needs
to be preserved for the long term. Certain phonetic analyses, for example, could be affected
by the omissions introduced by the mp3 compression algorithm. Converting from one lossy

Types of resources

63

compressed encoding to another typically introduces artifacts (“data” that has its origin not in
the depicted real world event or state, but by data manipulation algorithms, such as the curly
paper effect on grey areas in a Xerox copy of a Xerox copy), so after several conversions the
quality of the recordings will decrease. Since file formats and encodings typically have a limited
life span, one should in principle store data in uncompressed form if interpretability in the
long run is a goal. The current situation however is such that this is easily feasible for audio
recordings but nearly impossible for video recordings. Video recording equipment that falls
within the typical humanities research budgets does not record in uncompressed form and even
if it did, the storage requirements would be still too demanding for today’s storage prices.

Compression of video data can be done within each video image (intra-frame compression,
comparable to JPEG compression of still images) as well as between consecutive images (inter-
frame compression). Since two consecutive images in a video signal typically share a lot of
content, some compression algorithms make use of that by only storing the differences rather
than each full image. If the data rate is sufficiently high and there is not a lot of motion in
the video, the intra-frame compression is hardly noticeable, but with lower data rates and fast
motion, some artifacts can occur (blocks appear in the image). The MiniDV tape-based format
only used intra-frame compression, but most consumer and semi-professional camcorders today
use MPEG2 or MPEG4/H.264 compressed video, which also uses inter-frame compression.

The quality of audio and video recordings depends on many more factors than just the
file format and encoding (microphone, lens, or imaging sensor quality, correct settings and
operation of the equipment, good recording circumstances, etc.), but these are beyond the
scope of this survey. When looking at uncompressed digital audio, there are basically two
parameters that determine the maximum quality that can technically be obtained: the bit rate
and the sampling frequency. The bit rate determines the maximum possible dynamic range
of the recording (difference between the loudest and softest possible sound) and the sampling
frequency determines the highest possible frequency component that can be represented in the
signal (half the sampling frequency, e.g. 22.05 kHz for a signal recorded at sampling frequency
of 44.1 kHz).

When looking at uncompressed digital video, there are four basic parameters that determine
the theoretical maximum quality that can be obtained: the spatial image resolution (number of
pixels in each image) the temporal resolution (number of images per second), the colour depth
(how many different colour values can a single pixel have) and the dynamic range (how many
different light intensity values can a single pixel have). In common video hardware we have
seen a shift in the spatial resolution of the image from Standard Definition to High Definition,
which contains up to 4 times as many pixels. The temporal resolution on typical video recording
hardware is limited by the video standards being used in the particular region, e.g. 25 frames
per second for the PAL standard and 30 frames per second for the NTSC standard. Some
recent hardware can record double the standard number of frames per second, and there are
specialised high-speed video cameras that can record thousands of frames per second. Most
video recording hardware reduces the colour information that is stored by making use of a
technique called “Chroma Subsampling”. Since the human eye has less spatial sensitivity for
colour information than for light intensity, the colour information is not stored for every single
pixel but for groups of 2 or 4 pixels. Colour information in a digital video signal is typically
represented as a 24-bit value (8 bits per primary colour) resulting in over 16 million possible
different colours, which is more than can be distinguished by the human eye. The dynamic
range of the human eye is much wider than the dynamic range of current video and display
technology, even when not considering dynamic adaptations that can occur within the human
eye over time (pupil dilation or constriction). This is already a limitation of the imaging sensor
technology and therefore not in the first place an issue of the digital representation in current
common video formats.

Types of resources

64

3.3. Recommendations

3.3.1. General recommendations
Data producers should search for information about the limitations of certain audio-visual data
representations and select formats that offer sufficient resolution in all dimensions that are
relevant for the research questions that they or future users might have. At the same time they
should inform themselves about any formats recommended or required by the data repository
at which they would like to archive their material.

Data repositories that preserve research data for the long term should select a limited set of
audio-visual formats as archival formats, based on the following criteria:

• suitability to represent the recorded events in sufficient detail in all relevant dimensions

• suitability to represent the recorded events in sufficient detail in all relevant dimensions

• suitability to convert to a different format without (too much) loss of information

• long-term perspective of the format

• openness of the format

• general acceptability of the format within the research domain (in case the criteria above
are already met and one needs to choose between formats that are in principle suitable as
archival formats).

For the time being, in practice the choice for certain video formats will be a compromise of
some kind since not all criteria can be fulfilled. Derived working formats can typically be
generated for practical usability if the archival format itself is not usable.

3.3.2. Practical recommendations given the current state
of technology

Audio recordings: Use uncompressed linear PCM audio at sufficient bit rates and sampling
frequencies for the recorded material. For speech this would be 16 bit 22 kHz as a minimum,
for field recordings where the environment needs to be accurately represented this would be
16 bit 44.1 kHz, for highly dynamic music this would be 24 bit 44.1 kHz.

Video recordings: For most purposes, video formats produced by the higher end of today’s
consumer camcorders (MPEG2 or MPEG4/H.264 at high bit rates) are sufficient in quality and
can be stored in their original form until storage space is cheap enough to convert the material
to a lossless format, if long-term preservation is a requirement.

• standard definition video size (720 × 576, 704 × 480), MPEG-2 compression up to 9.8 Mbit/
s (usually around 3.5 Mbit/s) – Fieldtrip recordings, field interviews, cultural events

• high definition video (1280 × 720, 1920 × 1080), H.264/MPEG-4 AVC compression up
to 48 Mbit/s (usually around 9 Mbit/s) – detailed analyses of gestures, eye gaze and facial
expressions (although this also depends a lot on the framing and distance when filming)

Types of resources

65

For special collections one could already consider to store the material in a lossless compressed
format, such as currently the MJPEG2000 format. Keep in mind, however, that all consumer
camcorders today record audio in compressed form.

4. Lexical resources
Axel Herold, BBAW Berlin

In this section you will learn how you can integrate a particular lexical resource into the
CLARIN-D infrastructure. You will be guided through some widely accepted standards for
various types of lexical resources, for which we will introduce prototypical examples. With
Toolbox/MDF we will introduce an example of an environment for the recording of lexical
entries.

This section gives only a rather broad overview of the main concepts connected with lexical
resources and is not intended to replace general and introductory works, e.g. [Svensen 2009]
and, for German, [Kunze/Lemnitzer 2007] and [Engelberg/Lemnitzer 2009].

Since the handling of lexical resources in the CLARIN-D infrastrucure is not yet as mature as
for example with text corpora, we will give you some recommendations of how to best prepare
your resource in order to make integration as smooth as possible.

4.1. Introduction
Lexical resources are collections of lexical items, typically together with linguistic information
and/or classification of these items. Commonly encountered types of lexical items are words,
multi-word units and morphemes. Individual items of a lexical resource need not be neccessarily
of the same type. They are represented by a lemma. A lexical item and the information related
to it together form a lexical entry. Other common general terms used for lexical resources are

• dictionary, mostly refering to reference works compiled to be used by humans directly, and

• lexicon, used in a more technical sense mainly as integral part of complex natural language
processing (NLP) applications such as language/speech analysis and production systems and
thus often not used by humans directly.

Exact definitions of these terms vary slightly across different scientific communities.

Types of lexical resources can be established based on various criteria. The following list is not
exhaustive. It rather serves to illustrate the conceptual diversity among lexical resources with
regard to their internal structure and the information that they provide:

• The subject of a lexical resource determines the information that is recorded in its entries.
There are no inherent restrictions as to what information may be supplied. Morphological,
semantic, phonological and etymological information is commonly found in lexical resources
among numerous other types.

• A lexical resource can be construed as an unordered set or an ordered list of lexical entries
but it may also have a more complex internal structure such as a hierarchical tree (see
Section 4.2.3, “WordNet and similar resources”). This relation between lexical entries is
called the resource's macro structure.

• Lexical items are generally considered to have an internal hierarchical structure termed micro
structure. Thus lexical resources can be classified according to the depth of their micro

Types of resources

66

structure. The minimal structural depth is found in lemma lists that only serve to identify or
enumerate lexical items. There is no inherent restriction to the maximum depth of a lexical
item's internal structure.

• Human vs. machine readable: This dimension characterizes the intended main addressee of
the resource. The content of human readable dictionaries can be readily read by humans in
its primary representation (e.g. black ink on white paper or a rendered image on a computer
screen). In machine readable dictionaries (MRD) the data is accessable for computers by
means of a fixed set of encodings together with a scheme supporting the identification
of individual units of information. These units need not necessarily be of linguistic or
lexicographic relevance, i.e. they do not need to represent the lexical entries' micro structure.
A plain text representation of a lexical resource as a stream of individual characters is already
a most primitive form of MRD.

Human and machine readability are not complementary features. As long as lexical data is
provided in a plain text encoding an electronic lexical resource is both human and machine
readable. For a more detailed account of the overlap between human and machine readability
see the dicussion of views in Section 4.2.1, “Text encoding initative”.

• The distinction between monolingual and multilingual resources focusses on the number of
subject languages with regard to the lexical items of the resource. In a monolingual lexicon
lexical items systematically occur in only one language while in a multilingual lexicon lexical
items in one language are systematically connected with equivalent lexical items in at least
one other language.

• Lexical information given in a lexicon can be recorded in different modes of communication
(see also Section 3, “Multimodal corpora”). While most lexicons contain only written data
some record speech data or gesture representations. At the time of writing there are no lexical
resources provided by CLARIN-D that contain data other than written text.

Generally, the micro structure of lexical entries and the relations among the entries are the key
features of a lexical resource and consequently have to be accounted for in the data modeling.

4.2. Common formats
This section constitutes a brief overview of the most commonly encountered types and formats
of electronic lexical resources and the data formats they are encoded in. The sections on TEI,
LMF and wordnets describe widespread general purpose formats; Section 4.2.4, “Toolbox/
MDF” illustrates the broad spectrum of existing lexical models by sketching resources built for
rather narrow domains.

4.2.1. Text encoding initative
Many dictionaries in the Text encoding initiative's (TEI) [http://www.tei-c.org/] markup
format are results of retrodigitization efforts due to the TEI's strong focus on printed text
representation. Although it is entirely possible do develop born-digital dictionaries in TEI we
are not aware of any such enterprise.

[TEI P5] provides a detailed description of the TEI markup format for electronic text of various
kinds (chapter 9 specifically deals with the representation of dictionary data.).

The key to understanding TEI for dictionaries is the distinction between different views that
can be encoded for a given dictionary:

http://www.tei-c.org/
http://www.tei-c.org/

Types of resources

67

1. The typographic view is described by [TEI P5] as “the two-dimensional printed page”, i.e.
a view on the textual data that allows the reconstruction of the page layout including all
artefacts that are due to the print medium like line breaks.

2. In the editorial view the text is represented as a “one-dimensional sequence of tokens”, i.e.
a token stream without specific media-dependend typographic information.

3. Finally, the lexical view represents the structured lexicographical information in the
dictionary regardless of its typographic or textual form in print. This is also a way of
enriching the dictionary with lexical data that is not present in the primary (printed) text.

A purely lexical representation of a dictionary's textual content can be perceived as a
database model of that data.

In a concrete instance these views need not necessarily be separated on a structural level
although it is strongly recommended to keep them apart. This way the modeling of conflicting
hierarchies across different views can be avoided. The TEI guidelines advise encoders to encode
only one view directly using the primary XML element structure and provide information
pertaining to another view by other devices like XML attributes or empty elements (e.g.
milestone).

In the context of linguistic processing within the CLARIN-D workflow, the lexical view (the
lexicographically informed structure and classification of the textual content) is of primary
interest.

Example 6.1, “TEI encoded lexical entry for Bahnhof (train station), lexical view.” shows an
example of a TEI dictionary article in the lexical view for the German word Bahnhof (“train
station”) with a rather modest level of lexicographic details (wordform, grammatical properties,
senses, definitions, quotations). The TEI is a highly configurable framework and the level of
details for the lexicographical view can be considerably increased, e.g. by means of customizing
@type or @value attributes and the set of permitted values.

Every TEI dictionary file contains an obligatory metadata header (see Section 5.5, “Text
Encoding Initiative (TEI)” in Chapter 2, Metadata). Within the text section a highly
developed vocabulary for lexical resources allows for the detailed annotation of a broad range
of lexicographic elements.

Example 6.1. TEI encoded lexical entry for Bahnhof (train station), lexical
view.

<entry xml:id="a_1">
 <form>
 <orth>Bahnhof</orth>
 </form>
 <gramGrp>
 <pos value="N" />
 <gen value="masculine" />
 </gramGrp>
 <sense>
 <def>...</def>
 <cit>
 <quote>der Zug fährt in den Bahnhof ein</quote>
 </cit>

Types of resources

68

 </sense>
 <!-- ... -->
 <sense>
 <def>...</def>
 </sense>
</entry>

In Example 6.1, “TEI encoded lexical entry for Bahnhof (train station), lexical view.”, the
entry element is the basic unit of information which contains clearly form based (form) and
semantic information (sense). The gramGrp element comprises grammatical information
separate from the form description. This is not necessarily the case and may be encoded
differently e.g. by subsuming gramGrp under form and thus relating the grammatical features
to the concrete formal realization of the lemma. For existing print dictionaries the explicit
relations between (micro)structural elements cannot always be reliably reconstructed or may
be inconsistent throughout the resource. To account for this situation the TEI guidelines are
very liberal with respect to permitted structures and often allow direct and indirect recursive
inclusion of elements. For this reason encoding projects exploiting the guidelines resort to
customization, i.e. project specific constrains and extensions for the generically permitted
structures and possible values.

To tighten the TEI element semantics beyond the informal descriptions provided by the
guidelines explicit references to the ISOcat data category registry (see Chapter 3, Resource
annotations) can be established via @dcr:* attributes in the document instance. See
Example 6.2, “Part of a TEI dictionary entry with references to ISOCat” for an example. To
reduce the verbosity of directly linking each instance of a data category to the registry directly,
the connection should preferably be maintained via equiv elements in the ODD file (“One
document does it all”), a combination of schema fragments and documentation based on the
TEI's tagdocs module which is typically used for customizing the TEI schema.

Example 6.2. Part of a TEI dictionary entry with references to ISOCat

<gramGrp>
 <pos value="N"
 dcr:datcat="http://www.isocat.org/datcat/DC-1345"
 dcr:valueDatcat="http://www.isocat.org/datcat/DC-1256" />
</gramGrp>

4.2.2. Lexical markup format
Unlike the general TEI model, the Lexical markup format [http://
www.lexicalmarkupframework.org/] (LMF, [ISO 24613:2008]) focusses exclusively on the
lexical representation of the data (equivalent to TEI's lexical view) because the design goal
for LMF was the creation of a detailed meta model for all types of NLP lexicons, i.e.
electronic lexical databases. In LMF, the reference to a data category registry is mandatory.
This guarantees semantic unambiguity for the categories used within this framework.

The framework consists of a generic core package accompanied by a set of more domain
specific extensions (morphology, morphological patterns, multiword expressions, syntax,
semantics, multilingual notations, constraint expression, machine readable dictionaries).

There is a strict division between form related and semantic information on the level of
individual entries. Unlike in the TEI guidelines recursion is kept at a minimum. In the
core package, only Sense allows for recursion. LMF provides a generic feature structure

http://www.lexicalmarkupframework.org/
http://www.lexicalmarkupframework.org/
http://www.lexicalmarkupframework.org/

Types of resources

69

representation (feat class) which enables the modeling of data and annotations for LMF
elements.

Example 6.3. Part of an LMF encoded lexicon entry based on the LMF
core and morphology packages.

<LexicalEntry>
 <feat att="partOfSpeech" val="noun" />
 <feat att="gender" val="masculine" />
 <Lemma>
 <feat att="writtenForm" val="Bahnhof" />
 </Lemma>
 <WordForm>
 <feat att="writtenForm" val="Bahnhof" />
 <feat att="grammaticalNumber" val="singular" />
 </WordForm>
 <WordForm>
 <feat att="writtenForm" val="Bahnhöfe" />
 <feat att="grammaticalNumber" val="plural" />
 </WordForm>
 <Sense id="s1">
 </Sense>
 <!-- ... -->
 <Sense id="sn">
 </Sense>
</LexicalEntry>

Compared to the vanilla TEI guidelines the LMF meta-model is much tighter designed due to
its much narrower target domain, namely NLP applications. This condensed focus makes it a
good choice for resource harmonization and alignment for electronic lexicographic resources
in complex research infrastructures such as CLARIN-D. A number of research projects
have already developed and exploited XML serializations of LMF mainly for the purpose of
data exchange, including RELISH [http://www.mpi.nl/RELISH], KYOTO [http://www.kyoto-
project.eu/] and LIRICS [http://lirics.loria.fr/].

4.2.3. WordNet and similar resources
The Princeton WordNet [http://wordnet.princeton.edu/] and conceptionally similar databases
for other languages than English are probably the most often exploited lexical resources within
the NLP community. See e.g. [Fellbaum 1998] for some prototypical applications of wordnets.

In a wordnet, synsets (synonym sets) are the building blocks of the resource. Synsets represent
mental concepts and can be linguistically expressed by one or more lexical word forms. These
word forms are perceived as synonymous in the context of the synset; they share the same
meaning that is represented by the synset. It is possible for a synset not to have a linguistic
expression instantiating it in any given language, though (lexical gap). A linguistic expression on
the other hand can appear in more than one synset. In many wordnets additional information is
provided for a synset to make it more accessable for humans, most notably semantic paraphrases
(glosses) or (corpus) quotations.

Among synsets different conceptual relations can be established which leads to a net-like
conceptional structure (hence the name wordnet). If only hyponymy (is_a) and its reverse
relation hyperonymy are considered the conceptional structure becomes tree-like and thus
represents a (partial) conceptual hierarchy. Wordnets differ with respect to the enforcement

http://www.mpi.nl/RELISH
http://www.mpi.nl/RELISH
http://www.kyoto-project.eu/
http://www.kyoto-project.eu/
http://www.kyoto-project.eu/
http://lirics.loria.fr/
http://lirics.loria.fr/
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/

Types of resources

70

of a tree structure for these relations. Another conceptional relation that is often found is
meronymy (part_of), possibly further divided into sub-relations. Different wordnets may
maintain different sets of conceptual relations.

While conceptional relations are established among synsets, lexical relations can be established
among the linguistic expressions. These relations may be relatively broad and underspecified
with respect to the grammatical processes involved (derived_from) but also very fine
grained lexical relation systems can be implemented.

While the Princeton WordNet traditionally uses so called lexicographer files (a proprietary
plain text database system spread across a number of files), and alternatively a Prolog version of
the database, most other wordnet projects have adopted proprietary XML serializations as their
distribution format. The Princeton WordNet project is currently also planning on a transition
to an XML serialization.

4.2.4. Toolbox/MDF
The so called “standard format” used by MDF (Multi-Dictionary Formatter, part of SIL's
Toolbox [http://www.sil.org/computing/toolbox/], a software suite that is popular among field
linguists) is a set of field marker and value pairs (i.e. feature-value-pairs) that is linearized into
a plain text file. MDF provides an implicit default hierarchy of its field markers that can be
redefined by the user. This effectively allows the choice between the creation of form (i.e. part-
of-speech) oriented or sense oriented entries (cf. Example 6.4, “MDF encoded sense oriented
Iwaidja lexicon entry”).

The MDF standard format is primarily used for the generation of print dictionaries. It can be
mapped onto LMF provided form and sense descriptions within entries are cleanly separated
(see [Ringersma/Drude/Kemp-Snijders 2010]). There is also a native XML serialization for
the standard format available (Lexicon interchange format, LIFT [http://code.google.com/p/
lift-standard/]).

Example 6.4. MDF encoded sense oriented Iwaidja lexicon entry

\lx alabanja
\sn 1
\ps n
\de beach hibiscus.Rope for harpoons and tying up canoes
is made from this tree species, and the timber is used to
make |fv{larrwa} smoking pipes
\ge hibiscus
\re hibiscus, beach
\rfs 205,410; IE 84
\sd plant
\sd material
\rf Iwa05.Feb2
\xv alabanja alhurdu
\xe hibiscus string/rope
\sn 2
\ps n
\de short-finned batfish
\ge short-finned batfish
\re batfish, short-finned
\sc Zabidius novaemaculatus
\sd animal

http://www.sil.org/computing/toolbox/
http://www.sil.org/computing/toolbox/
http://www.sil.org/computing/toolbox/
http://code.google.com/p/lift-standard/
http://code.google.com/p/lift-standard/
http://code.google.com/p/lift-standard/

Types of resources

71

\sd fish
\rf Iwaidja Fish Names.xls
\so MELP project elicitation
\eb SH
\dt 19/Dec/2006

Note the \sn (sense number) and \ps (part-of-speech) field markers.

The example was taken from the [Ringersma/Drude/Kemp-Snijders 2010] presentation.

4.3. Formats endorsed by CLARIN-D
CLARIN-D directly supports LMF serializations and its own internal pivot format TCF. Due
to the high structural diversity among lexical resources in TEI or Toolbox/MDF formats it is
not feasable to maintain general purpose conversion tools for transformation into CLARIN-D
compatible resources. However, a clearing center for lexical resources is operated by BBAW
that provides guidance and support for the creation of project specific conversion tools. You
can contact the clearing center via e-mail at mailto:dwds@dwds.de.

We encourage users to either contact the clearing center for lexical resources or provide an
LMF serialisation of their data if that is already available.

Depending on the research question it may also be appropriate to use a dictionary's text or parts
of it as a text corpus, e.g. as a collection of all quoted usage examples. If a lexical resource is
intended to be used that way as opposed to a lexical database the recommendations of Section 2,
“Text Corpora” apply.

Existing LMF serializations

LMF is intended to enable the mapping of all existing (NLP) lexicons onto a
common model and LMF compliant resources are directly supported by CLARIN-
D.

CLARIN-D provides and maintaines a (partial) mapping from LMF based
serializations to its internal pivot format TCF.

Converting proprietary formats to LMF

To transform a proprietary format into an LMF serialisation the following steps
have to be taken:

• identify all micro- and macro-structural elements and possible annotations of
the resource,

• map these categories to their LMF representation,

• determine the corresponding ISOCat categories (or create them in case they do
not already exist), and

• create a schema description for the LMF serialisation with references to the
ISOCat categories. For details as to how to create a schema description see
Chapter 5, Quality assurance .

Following this approach the Princeton WordNet together with the Dutch, Italian,
Spanish, Basque and Japanese wordnets were sucessfully transformed into LMF

mailto:dwds@dwds.de

Types of resources

72

serializations in the course of the KYOTO project [http://www.kyoto-project.eu/
]. Alignment across the wordnets was also modeled in LMF demonstrating the
suitability of this framework for representing this subset of lexical resources. Tools
and data are available on the project's homepage [http://xmlgroup.iit.cnr.it/kyoto/
index.php?option=com_content&view=section&id=28&Itemid=131].

TCF pivot format

Support for lexical resources via TCF – the CLARIN-D internal representation
for linguistic data – is still in its infancy. The TCF lexicon module provides means
for representing word form based result lists for queries on textual corpora (see
Section 2, “Text Corpora”) or lexical resources. It follows the stand-off annotation
paradigm and currently implements the layers lemmas (mandatory), POStags,
frequencies, and word-relations (all optional). See Example 6.5, “TCF
representation for lexical items” for an example instance.

Example 6.5. TCF representation for lexical items

<Lexicon xmlns="http://www.dspin.de/data/lexicon"
 lang="de">
 <lemmas>
 <lemma ID="l1">halten</lemma>
 <lemma ID="l2">Vortrag</lemma>
 </lemmas>
 <POStags tagset="basic">
 <tag lemID="l1">Verb</tag>
 <tag lemID="l2">Noun</tag>
 </POStags>
 <frequencies>
 <frequency lemID="l1">1257</frequency>
 <frequency lemID="l2">193</frequency>
 </frequencies>
 <word-relations>
 <word-relation type="syntactic relation"
 func="verb+direct-object" freq="13">
 <term lemID="l1"/><term lemID="l2"/>
 <sig measure="MI">13.58</sig>
 </word-relation>
 </word-relations>
</Lexicon>

The example was taken from [Przepiórkowski 2011].

The technical description of the TCF lexicon model is available at the CLARIN-
D website [http://www.clarin-d.de/index.php/en/component/content/article/53-
tutorials/20].

We do not recommend the direct provision of TCF based versions of lexical
resources as TCF is an ever evolving pivot format meant for data representation
solely within the CLARIN-D infrastructure. Currently, it is not a suitable common
model for lexical resources in the broad sense intended by LMF. The TCF format
is tailor-made with the needs of NLP tool chains in mind and will therefore be
subject to changes when additional needs for processing within CLARIN-D arise.

http://www.kyoto-project.eu/
http://www.kyoto-project.eu/
http://xmlgroup.iit.cnr.it/kyoto/index.php?option=com_content&view=section&id=28&Itemid=131
http://xmlgroup.iit.cnr.it/kyoto/index.php?option=com_content&view=section&id=28&Itemid=131
http://xmlgroup.iit.cnr.it/kyoto/index.php?option=com_content&view=section&id=28&Itemid=131
http://www.clarin-d.de/index.php/en/component/content/article/53-tutorials/20
http://www.clarin-d.de/index.php/en/component/content/article/53-tutorials/20
http://www.clarin-d.de/index.php/en/component/content/article/53-tutorials/20
http://www.clarin-d.de/index.php/en/component/content/article/53-tutorials/20

73

Chapter 7. Linguistic tools
Scott Martens, Kathrin Beck, Thomas Zastrow, Universität
Tübingen
Computational linguistic tools are programs that perform operations on linguistic data, i.e.
analyses, transformations or other tasks that add to or change language data, or that assist people
in performing such tasks. In this section we provide an introduction to the general classes of
linguistic tools and what purposes they serve. It is intended to provide computer programmers,
technicians, and humanities researchers outside of computational linguistics with a background
for understanding linguistic tools in order to better use the CLARIN-D infrastructure and
identify how it can meet their needs. This means discussing some notions from linguistics that
are specifically relevant to understanding language processing tools.

The CLARIN-D project is focused on providing an infrastructure for the maintenance
and processing of language resources, in which natural language processing (NLP) and
computational linguistics (CL) play prominent roles. CLARIN-D supports many different tools
of very different kinds, without regard for the scientific and theoretical claims behind those
tools. Individual linguistic tools and resources may be based on specific linguistic schools or
theoretical claims, but the CLARIN-D infrastructure is neutral with respect to those theories.

Many computational linguistic tools are extensions of pre-computer techniques used to analyze
language. Tokenization, part-of-speech tagging, parsing and word sense disambiguation, as well
as many others, all have roots in the pre-computer world, some going back thousands of years.
Computational tools automate these long-standing analytical techniques, often imperfectly but
still productively.

Other tools, in contrast, are exclusively motivated by the requirements of computer processing
of language. Sentence-splitters, bilingual corpus aligners, and named entity recognition, among
others, are things that only make sense in the context of computers and have little immediate
connection to general linguistics but may be very important for computer applications.

Linguistic tools can also encompass programs designed to enhance and facilitate access to
digital language data. Some of these are extensions of pre-computer techniques like indexing
and concordancing (i.e. preparing a sorted list of words or other elements in a text, along with
their immediate context, or all of the locations in the text where they occur, or both). But
linguistic tools can also include more recent developments like search engines, some of which
are already sensitive to the linguistic annotation of primary data. Textual information retrieval
is a large field and in this user guide we will discuss only search and retrieval tools specialized
for or based on linguistic analysis.

1. Hierarchies of linguistic tools
Linguistic tools are often interdependent and frequently incorporate some elements of linguistic
theory. Modern linguistics draws on traditions of structuralism, a school of thought in the
humanities and social sciences dating to the early 20th century. Structuralism emphasized
the study of phenomena as hierarchal systems of elements, organized into different levels of
analysis, each with their own units, rules, and methodologies. In general, linguists organize their
theories in ways that show structuralist influences, although many disclaim any attachment to
structuralism. Linguists disagree about what levels of analysis exist, what units are appropriate
to each level, to what degree different languages might have differently organized systems of

Linguistic tools

74

units and levels, and how those levels interrelate. However, hierarchal systems of units and
levels of analysis are a part of almost all linguistic theories and are very clearly reflected in the
practices of computational linguists.

Linguistic tools are usually categorized by the level of analysis they perform, and different
tools may operate at different levels and over different units. There are often hierarchal
interdependencies between tools. A tool used to perform analysis at one level often requires,
as input, the results of an analysis at a lower level.

Figure 7.1. A hierarchy of levels of linguistic analysis

Figure 7.1, “A hierarchy of levels of linguistic analysis” is a very simplified hierarchy of
linguistic units, sub-disciplines and tools – which is why “higher” and “lower” are in quotes.
It does not provide a complete picture of linguistics and it is not necessarily representative of
any specific linguistic school, nor should any implication about the complexity or importance
of particular levels of analysis be taken from this scheme. However, it provides an outline and
a reference framework for understanding the way hierarchal dependencies between levels of
analysis affect linguistic theories and tools: Higher levels of analysis generally depend on lower
ones.

Syntactic analysis like parsing usually requires words to be clearly delineated and part-of-speech
tagging or morphological analysis to be performed first. This means, in practice, that texts
must be tokenized, their sentences clearly separated from each other, and their morphological
properties analyzed before parsing can begin. In the same way, semantic analysis is often
dependent on identifying the syntactic relationships between words and other elements, and
inputs to semantic analysis tools are often the outputs of parsers.

However, this simplistic picture has many important exceptions. Lower level phenomena often
have dependencies on higher level ones. Correctly identifying the part-of-speech, lemmas,

Linguistic tools

75

and morphological categories of words may depend on a syntactic analysis. Morphological
and syntactic analysis can affect phonetic analysis: Without information from higher in the
hierarchy, it can be impossible to tell the difference between “I recognize speech” and “I wreck
a nice beach” [Lieberman et al. 2005]. Even speech recognition – one of the lowest level tasks –
depends strongly on knowledge of the semantic and pragmatic context of speech.

Furthermore, there is no level of analysis for which all linguists agree on a single
standard set of units of analysis or annotation scheme. For example, the Penn
Treebank [http://www.cis.upenn.edu/~treebank/] and the British National Corpus [http://
www.natcorp.ox.ac.uk/] use different part-of-speech tags. Different tools will have radically
different inputs and outputs depending on the theoretical traditions and commitments of their
developers.

Most tools are also language specific. There are few functional generalizations between
languages that can be used to develop single tools that apply to multiple languages. Different
countries with different languages often have very different indigenous traditions of linguistic
analysis, and different linguistic theories are popular in different places, so it is not possible to
assume that tools doing the same task for different languages will necessarily be very similar
in inputs or outputs.

Corpus and computational linguists most often work with written texts, partly because written
texts do not usually require phonetic analysis and are easy to find in large quantities, and partly
because computational tools are much easier to obtain for written language than speech or
other forms of communication. This chapter will not discuss speech recognition and phonetic
analysis tools suitable for dealing directly with speech because very few of them are currently
part of the CLARIN-D infrastructure, although some of the multimedia tools described here
are suitable for some kinds of phonetic analysis. Most tools assume that their inputs are written
language data in specified data storage formats.

Furthermore, at the highest levels of analysis, tools are very specialized and standardization is
rare, so few tools for very high linguistic levels are discussed here. CLARIN-D is, however,
committed to support for all varieties of linguistic tools, and expects to provide more resources
at all levels of analysis as the project develops.

2. Automatic and manual analysis tools
Some computational linguistic tools exist just to provide linguists with interfaces to stored
language data. The earliest digital corpus tools were made to search in texts and display the
results in a compact way, like the widespread KWIC (key word in context) tools that date back
to the 1970s.

However, many current linguistic tools are used to produce an annotated resource. Annotation
involves the addition of detailed information to a linguistic resource about its contents. For
example, a corpus in which each word is accompanied by a part-of-speech tag, or a phonetic
transcription, or in which all named entities are clearly marked, is an annotated corpus.
Linguistic data in which the syntactic relationships between words are marked is usually called
a treebank. The addition of annotations can make texts more accessible and usable for linguistic
research, and may be required for further processing. Corpus annotation is discussed in greater
depth in Chapter 3, Resource annotations.

Automatic annotation tools add detailed information to language data on the basis of procedures
written into the software, without human intervention other than to run the program. Automatic

http://www.cis.upenn.edu/~treebank/
http://www.cis.upenn.edu/~treebank/
http://www.cis.upenn.edu/~treebank/
http://www.natcorp.ox.ac.uk/
http://www.natcorp.ox.ac.uk/
http://www.natcorp.ox.ac.uk/

Linguistic tools

76

annotation is sometimes performed by following rules set out by programmers and linguists,
but most often, annotation programs are at least partly based on machine learning algorithms
that are trained using manually annotated examples.

The vast majority of automatic annotation tools for linguistic data today are based on statistical
machine learning principles of some kind. This approach to problem-solving in computer
science goes back to the early 1950s when they were first applied to computer programs for
playing board games. Arthur Samuel's work at IBM on programs to play checkers is usually
credited as the first non-trivial work in machine learning. Although there were some very
promising early results, there was very little progress in machine learning from the mid 1960s
to the early 1990s – the period called the “AI Winter”. There was also very little use of
statistical methods in linguistics or natural language processing during that period, for reasons
that linguists still debate. However, a series of theoretical breakthroughs followed by very
strong practical demonstrations of the value of statistical analysis in linguistics turned the tide
in the 1990s, and now automatic linguistic annotation is overwhelmingly based on statistical
machine learning techniques. The history of natural language processing is discussed in part
in [Jurafsky/Martin 2009], the standard textbook for NLP, including the explosive growth of
machine learning and statistical and empirical methods in this field since the early 1990s. The
history of natural language processing overlaps heavily with the histories of linguistics, artificial
intelligence and computers, all of which are fast changing fields. Although there is a broad but
brief treatment of the history of artificial intelligence in the first chapter of [Russel/Norvig
2009] that covers much of what is described in this section, no up-to-date, general history of
the field is available.

Machine learning is a complex topic, but from a practical standpoint, many linguistic annotation
applications learn to annotate texts from manually annotated linguistic data. This process
of machine learning is usually called training. It means that a linguist prepares a manually
annotated corpus and then a computer program processes this data and learns how to replicate
automatically the linguist's manual annotation on new corpora. These kinds of programs can
often be adapted to new languages and annotation schemes if they are provided with appropriate
annotated data to learn from.

Linguistic tools that use machine learning generally save information about the tasks they are
trained to perform in files that are separate from the program itself. Using these tools may
require specifying the location of that “learned” information.

Automated annotation processes – whether based on machine learning or rules – almost always
have some rate of error, and before using any automatic annotation tool, it is important to
consider its error rate and how those errors will affect whatever further purpose annotated
corpora are used for, see also Chapter 5, Quality assurance .

Where possible, researchers prefer manually annotated resources with fewer errors. Fewer
errors does not mean no errors. Although we often treat manually annotated data as an
objectively correct standard, we do so because, first, we expect human errors to be random and
unbiased when compared to the systematic errors made by imperfect software; and second,
because we have no other means of constructing “correct” annotations than to have trained
people make them. Highly reliable manually annotated resources are, naturally, more expensive
to construct, rarer and smaller in size than automatically annotated data, but they are essential
for the development of automated annotation tools and are necessary whenever the desired
annotation procedure either has not yet been automated or cannot be automated. Various tools
exist to make it easier for researchers to annotate language data, some of which are described
in Section 5.1, “Manual annotation tools” and Section 6, “Multimedia tools”.

Linguistic tools

77

3. Technical issues in linguistic tool
management

Many of the most vexing technical issues in using linguistic tools are common problems
in computer application development. Data can be stored and transmitted in an array of
incompatible formats, generated by different applications, and either there are no standard
formats, or too many de-facto standards, or standards compliance is poor. Linguistic tool
designers are rarely concerned with those kinds of issues or specialized in resolving them. Part
of CLARIN-D's mandate, in developing infrastructure for language research, is overcoming
these technical problems.

Many tools accept and produce only plain text data, sometimes with specified delimiters and
internal structures accessible to ordinary text editors. Some tools require each word to be on a
separate line, others require each sentence on a line. Some will use comma- or tab-delimited text
files to encode annotation in their output, or require them as input. These encodings are often
historically rooted in the data storage formats of early language corpora. A growing number of
tools use XML for either input or output format.

Character encoding formats are an important technical issue when using linguistic tools. Most
languages use some characters other than 7-bit ASCII (the standard letters and punctuation
used in English) and there are different standards for characters in different languages and
operating systems. Unicode and its most widespread implementation UTF-8 are increasingly
used for written language data because they encode nearly all characters from nearly all modern
languages. But not all tools support Unicode. Full Unicode compatibility has only recently
become available on most operating systems and programming frameworks, and many non-
Unicode linguistic tools are still in use. Furthermore, the Unicode standard supports so many
different characters that simple assumptions about texts – like what characters constitute
punctuation and spaces between words – may differ between Unicode texts in ways that
are incompatible with some tools. For example, there are currently more than 20 different
whitespace characters in Unicode, five dashes and many more characters that look much like
dashes, as well as multiple variants for many common kinds of punctuation. In addition, many
alphabetic letters appear in a number of variants in Unicode, some ligatures can be encoded
as individual Unicode characters, and many other variations exist that are correctly human
readable but anomalous for computer processing.

One of the major axes of difference between various annotation formats is inline or stand-off
annotation. Inline annotation mixes the data and annotation in a single file or data structure.
Stand-off annotation means storing annotations separately, either in a different file, or in some
other way apart from language data, with a reference scheme to connect the two. See Chapter 3,
Resource annotations for more information about annotation formats.

4. Automatic segmentation and
annotation tools

The tools described in this section operate without very much direct user interaction, producing
an annotated or segmented resource as its output. Many of them require training and may be
available already trained for some tasks, or be available for users to train to suit their needs.

Linguistic tools

78

Those tools which are presently available through WebLicht – CLARIN-D's web service-
based linguistic workflow and tool execution enviroment – are marked with a small icon:

The tools listed here are not an exhaustive list of WebLicht-accessible tools, and as the
service grows, more tools will be integrated. For a current and comprehensive list of tools
available through WebLicht, please log in to the WebLicht website [https://weblicht.sfs.uni-
tuebingen.de/].

Sentence splitting and tokeniztation are usually understood as a way of segmenting texts rather
than transforming them or adding feature information. Each segment, be it a sentence or a
token, corresponds to a particular sequence of lower level elements (tokens or characters) that
forms, for the purposes of further research or processing, a single unit. Segementing digital
texts can be complicated, depending on the language of the text and the linguistic considerations
that go into processing it.

4.1. Sentence splitters
Sentence splitters, sometimes called sentence segmenters, split text up into individual sentences
with unambiguous delimiters.

Recognizing sentence boundaries in texts sounds very easy, but it can be a complex problem
in practice. Sentences are not clearly defined in general linguistics, and sentence-splitting
programs are driven by the punctuation of texts and the practical concerns of computational
linguistics, not by linguistic theory.

Punctuation dates back a very long time, at least to the 9th century BCE. The Meša Stele –
an inscribed stone found in modern Jordan describing the military campaigns of the Moabite
king Meša – is the oldest attestation of different punctuation marks to indicate word separation
and grammatical phrases [Compston1919], [Martens 2011]. Until modern times though, not
all written languages used punctuation. The idea of dividing written texts into individual
sentences using some form of punctuation is an invention of 16th century Italian printers and
did not reach some parts of the world until the mid-20th century. This makes it very difficult
to develop historical language corpora compatible with tools based on modern punctuation.
Adding punctuation to old texts is time-consuming and researchers of different schools will not
always agree on where the punctuation belongs.

In many languages – including most European languages – sentence delimiting punctuation has
multiple functions other than just marking sentences. The period often marks abbreviations as
well as being used to write ordinal numbers or to split large numerical expressions in groups
of three digits. Sentences can also end with a wide variety of punctuation other than the
period. Question marks, exclamation marks, ellipses (dropped words), colons, semi-colons and
a variety of other markers must have their purpose in specific contexts correctly identified
before they can be confidently considered sentence delimiters. Additional problems arise with
quotes, URLs and proper nouns that incorporate non-standard punctuation. Furthermore, most
texts contain errors and inconsistencies of punctuation that simple algorithms cannot easily
identify or correct.

Sentence splitters are often integrated into tokenizers, but some separate tools are available
including:

MX Terminator [ftp://ftp.cis.upenn.edu/pub/adwait/jmx/]
A splitter for English that can be trained for other languages.

https://weblicht.sfs.uni-tuebingen.de/
https://weblicht.sfs.uni-tuebingen.de/
https://weblicht.sfs.uni-tuebingen.de/
ftp://ftp.cis.upenn.edu/pub/adwait/jmx/
ftp://ftp.cis.upenn.edu/pub/adwait/jmx/

Linguistic tools

79

Stanford ssplit [http://nlp.stanford.edu/software/corenlp.shtml]
A splitter for English, but quite effective in other languages that use similar punctuation.

OpenNLP Sentence Detection [http://opennlp.apache.org/]
A splitter for English that can be trained for other languages.

4.2. Tokenizers
A token is a unit of language similar to a word but not quite the same. In computational
linguistics it is often more practical to discuss tokens instead of words, since a token
encompasses many linguistically irrelevant and / or defective elements found in actual texts
(numbers, abbreviations, punctuation, etc.) and avoids many of the complex theoretical
considerations involved in talking about words.

In modern times, most languages have writing systems derived from ancient languages used in
the Middle East and by traders on the Mediterranean Sea starting about 3000 years ago. The
Latin, Greek, Cyrillic, Hebrew and Arabic alphabets are all derived from a common ancient
source – a variety of Phoenician widely used in trade and diplomacy – and most historians think
that the writing systems of India and Central Asia come from the same origin. See [Fischer
2005] and [Schmandt-Besserat 1992] for fuller histories of writing.

All of the writing systems derived from ancient Phoenician use letters that correspond to
specific sounds. When words are written with letters that represent sounds, words can only be
distinguished from each other if set apart in some way, or if readers slowly sound the letters out
to figure out where the pauses and breaks are. The first languages to systematically use letters
to represent sounds usually separated text into word-like units with a mark of some kind –
generally a bar (“|”) or a double-dot mark much like a colon (“:”). However, these marks were
used inconsistently and many languages with alphabets stopped using explicit markers over
time. Latin, Greek, Hebrew and the languages of India were not written with any consistent
word marker for many centuries. Whitespaces between words were introduced in western
Europe in the 12th century, probably invented by monks in Britain or Ireland, and spread slowly
to other countries and languages [Saenger 1997]. Since the late 19th century, most languages –
all but a few in Pacific Asia – have been written with regular spaces between words.

For those languages, much but far from all of the work of tokenizing digital texts is performed
by whitespace characters and punctuation. The simplest tokenizers just split the text up by
looking for whitespace, and then separate punctuation from the ends and beginnings of words.
But the way those spaces are used is not the same in all languages, and relying exclusively
on spaces to identify tokens does not, in practice, work very well. Tokenization can be very
complicated because tokens do not always match the locations of spaces.

Compound words exist in many languages and often require more complex processing.
The German word Telekommunikationsvorratsdatenspeicherung (“telecommunications data
retention”) is one case, but English has linguistically similar compounds like low-budget
and first-class. Tokenizers – or sometimes similar tools that may be called decompounders
or compound splitters – are often expected to split such compounds up, or are expected
to only split some of them up. Whether or not compounds should be split may depend
on further stages of processing. For syntactic parsing of German, for example, it is often
undesirable because compounds are treated syntactically and morphologically like a single
word, i.e., plurals and declinations only change the end of the whole compound and
parsers can recognize parts-of-speech from the final part of the compound. In French, the
opposite is often true and compounds like arc-en-ciel (“rainbow”) and cannot be treated as
single words because pluralization modifies the middle of the compound (arcs-en-ciel). For

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://opennlp.apache.org/
http://opennlp.apache.org/

Linguistic tools

80

information retrieval, in contrast, German words are almost always decompounded, because
a search for Vorratsdatenspeicherung (“data retention”) should match documents containing
Telekommunikationsvorratsdatenspeicherung. In French, however, no one would want arc
(“arch”, “arc”, or “bow”) or ciel (“sky” or “heaven”) to match arc-en-ciel. English has examples
of both kinds of compounds, with words like houseboats that behave like German compounds,
but also parts-of-speech, which behave like French ones.

In other cases, something best treated as a single token may appear in text as multiple words
with spaces, like New York. There are also ambiguous compounds, where they may sometimes
appear as separate words and sometimes not. Egg beater, egg-beater and eggbeater are all
possible in English and mean the same thing.

Short phrases that are composed of multiple words separated by spaces may also sometimes
be best analyzed as a single word, like the phrase by and large or pain in the neck in English.
These are called multi-word terms and may overlap with what people usually call idioms.

Contractions like I'm and don't also pose problems, since many higher level analytical tools
like part-of-speech taggers and parsers may require them to be broken up, and many linguistic
theories treat them as more than one word for grammatical purposes.

Phrasal verbs in English and separable verbs in German are another category of problem for
tokenizers, since these are often best treated as single words, but are separated into parts that
may not appear next to each other in texts. For example:

1. When we love others, we naturally want to talk about them, we want to show them off, like
emotional trophies. (Alexander McCall Smith, Friends, Lovers, Chocolate)

2. Die Liebe im Menschen spricht das rechte Wort aus. (“People's love utters the right word.”,
Ferdinand Ebner, Schriften, vol. 2.)

Verbs like to show off in English and aussprechen in German often require treatment as single
words, but in the examples above, appear not only as separate words, but with other words
between their parts. Simple programs that just look for certain kinds of characters cannot
identify these structures as tokens.

Which compounds, if any, should be split, and which multi-part entities should be processed as
a single token, depends on the language of the text and the purpose of processing. Consistent
tokenization is generally related to identifying lexical entities that can be looked up in some
lexical resource and this can require very complex processing for ordinary texts. Its purpose is
to simplify and remove irregularities from the data for the benefit of further processing. Since
the identification of basic units in text must precede almost all kinds of further processing,
tokenization is the first or nearly the first thing done for any linguistic processing task.

Additional problems can arise in some languages. Of major modern languages, only Chinese,
Japanese and Korean currently use writing systems not thought to be derived from a common
Middle Eastern ancestor, and they do not systematically mark words in ordinary texts with
spaces or any other visible marker. Several southeast Asian languages – Thai, Lao, Khmer and
some other less widely spoken languages – still use no spaces today or use them rarely and
inconsistently despite having writing systems derived from those used in India. Vietnamese –
which is written with a version of the Latin alphabet today, but used to be written like Chinese –
places spaces between every syllable, so that even though it uses spaces, they are of little value
in tokenization. Tokenization in these languages is a very complex process that can involve large
dictionaries and sophisticated machine learning procedures.

As mentioned in the previous section, tokenization is often combined with sentence-splitting
in a single tool. Some examples for implementations of tokenizers are:

Linguistic tools

81

OpenNLP tokenizer [http://opennlp.apache.org/]
A tokenizer for English and German that includes an optional sentence splitter (see
Section 4.1, “Sentence splitters”).

Stuttgart tokenizer [http://www.ims.uni-stuttgart.de/]
A tokenizer for German, English, French, Italian, Czech, Slovenian, and Hungarian that
includes a sentence splitter (see Section 4.1, “Sentence splitters”).

Stanford tokenizer [http://nlp.stanford.edu/software/corenlp.shtml]
A tokenizer for English text (part of the Stanford CoreNLP tool).

4.3. Part-of-speech taggers
Part-of-speech taggers (PoS taggers) are programs that take tokenized text as input and
associate a part-of-speech tag (PoS tag) with each token. A PoS tagger uses a specific, closed
set of parts-of-speech – usually called a tagset in computational linguistics. Different taggers for
different languages will routinely have different, sometimes radically different, tagsets or part-
of-speech systems. For some languages, however, de-facto standards exist in the sense that most
part-of-speech taggers use the same tagset. In German, for example, the STTS tagset is very
widespread, but in English several different tagsets are in regular use, like the Penn Treebank
tagset and several versions of the CLAWS tagset.

A part-of-speech is a category that abstracts some of the properties of words or tokens. For
example, in the sentence The dog ate dinner there are other words we can substitute for dog and
still have a correct sentence, words like cat or man. Those words have some common properties
and belong to a common category of words. PoS schemes are designed to capture those kinds
of similarities. Words with the same PoS are in some sense similar in their use, meaning, or
function.

Parts-of-speech have been independently invented at least three times in the distant past.
They are documented to the 5th century BC in Greece, approximately for the same period in
India, and from the 2nd century AD in China. There is no evidence to suggest any of these
three inventions was copied from other cultures. The origins of parts-of-speech are described
in greater detail in [Martens 2011]. The 2nd century BCE Greek grammar text The Art of
Grammar outlined a system of nine PoS categories that became very influential in European
languages: nouns, verbs, participles, articles, pronouns, prepositions, adverbs, and conjunctions,
with proper nouns as a subcategory of nouns. Most PoS systems in use today have been
influenced by that scheme.

Modern linguists no longer think of parts-of-speech as a fixed, short list of categories that is
the same for all languages. They do not agree about whether or not any of those categories
are universal, or about which categories apply to which specific words, contexts and languages.
Different linguistic theories, different languages, and different approaches to annotation use
different PoS schemes.

Tagsets also differ in the level of detail they provide. A modern corpus PoS scheme,
like the CLAWS tagset used for the British National Corpus, can go far beyond the
classical nine parts-of-speech and make dozens of fine distinctions. CLAWS version 7
[http://www.natcorp.ox.ac.uk/docs/c7spec.html] has 22 different parts-of-speech for nouns
alone. Complex tagsets are usually organized hierarchically, to reflect commonalities between
different classes of words.

http://opennlp.apache.org/
http://opennlp.apache.org/
http://www.ims.uni-stuttgart.de/
http://www.ims.uni-stuttgart.de/
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://www.natcorp.ox.ac.uk/docs/c7spec.html
http://www.natcorp.ox.ac.uk/docs/c7spec.html

Linguistic tools

82

Examples of widely used tagsets include STTS for German [Schiller et al. 1999], the Penn
Treebank Tagset for English [Santorini 1990], and the CLAWS tagset for English [Garside et
al. 1997]. Most PoS tagsets were devised for specific corpora, and are often inspired by older
corpora and PoS schemes. PoS taggers today are almost all tools that use machine learning
and have been specifically trained for the language and tagset they use. They can usually be
retrained for new tagsets and languages.

PoS taggers almost always expect tokenized texts as input, and it is important that the tokens
in texts match the ones the PoS tagger was trained to recognize. As a result, it is important
to make sure that the tokenizer used to preprocess texts matches the one used to create the
training data for the PoS tagger.

Another important factor in the development of PoS taggers is their handling of out-of-
vocabulary words. A significant number of tokens in any large text will not be recognized by
the tagger, no matter how large a dictionary they have or how much training data was used. PoS
taggers may simply output a special “unknown” tag, or may guess what the right PoS should
be given the remaining context. For some languages, especially those with complex systems
of prefixes and suffixes for words, PoS taggers may use morphological analyses to try to find
the right tag.

Implementations of PoS taggers include:

TreeTagger [http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/]

A PoS tagger for German, English, French, Italian, Dutch, Spanish, Bulgarian, Russian,
Greek, Portuguese, Chinese, Swahili, Latin, Estonian and old French, and trainable for
many others.

OpenNLP tagger [http://opennlp.apache.org/]
A PoS tagger for English and German distributed as part of the Apache OpenNLP toolkit.

Stanford PoS tagger [http://nlp.stanford.edu/software/corenlp.shtml]
A PoS tagger for English distributed as part of the Stanford Core NLP toolkit.

Brill tagger [http://cst.dk/download/uk/index.html]
A PoS tagger for English, Danish, Dutch and Norwegian (Nynorsk).

4.4. Morphological analyzers and lemmatizers
Morphology is the study of how words and phrases change in form depending on their meaning,
function and context. Morphological tools sometimes overlap in their functions with PoS taggers
and tokenizers.

Because linguists do not always agree on what is and is not a word, different linguists may
disagree on what phenomena are part of morphology, and which ones are part of syntax,
phonetics, or other parts of linguistics. Generally, morphological phenomena are considered
either inflectional or derivational depending on their role in a language.

4.4.1. Inflectional morphology
Inflectional morphology is the way words are required to change by the rules of a language
depending on their syntactic role or meaning. In most European languages, many words have
to change form depending on the way they are used.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://opennlp.apache.org/
http://opennlp.apache.org/
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://cst.dk/download/uk/index.html
http://cst.dk/download/uk/index.html

Linguistic tools

83

How verbs change in form is traditionally called conjugation. In English, present tense verbs
have to be conjugated depending on their subjects. So we say I play, you play, we play and they
play but he plays and she plays. This is called agreement, and we say that in English, present
tense verbs must agree with their subjects, because the properties of whatever the subject of
the verb is determine the form the verb takes. But in the past tense, English verbs have to take
a special form to indicate that they refer to the past, but do not have to agree. We say I played
and he played.

Languages can have very complex schemes that determine the forms of verbs, reflecting very
fine distinctions of meaning and requiring agreement with many different features of their
subjects, objects, modifiers or any other part of the context in which they appear. These
distinctions are sometimes expressed by using additional words (usually called auxiliaries or
sometimes helper words), and sometimes by prefixes, suffixes, or other changes to words. Many
languages also combine schemes to produce potentially unlimited variations in the forms of
verbs.

Nouns in English change form to reflect their number: one dog but several dogs. A few words in
English also change form based on the gender of the people they refer to, like actor and actress.
These are rare in English but common in most other European languages. In most European
languages, all nouns have an inherent grammatical gender and any other word referring to them
may be required to change form to reflect that gender.

In many languages, nouns also undergo much more complex changes to reflect their
grammatical function. This is traditionally called declension or a case. In the German sentence
Das Auto des Lehrers ist grün (“The teacher's car is green”), the word Lehrer (“teacher”) is
changed to Lehrers because it is being used to say whose car is meant.

Agreement is often present between nouns and words that are connected to them grammatically.
In German, nouns undergo few changes in form when declined, but articles and adjectives used
with them do. Articles and adjectives in languages with grammatical gender categories usually
must also change form to reflect the gender of the nouns they refer to. Pronouns, in most
European languages, also must agree with the linguistic properties of the things they refer to
as well as being declined or transformed by their context in other ways.

The comparative and superlative forms of adjectives – safe, safer, safest is one example – are
also usually thought of as inflectional morphology.

Some languages have very complex inflectional morphologies. Among European languages,
Finnish and Hungarian are known to be particularly complex, with many forms for each verb
and noun, and French is known for its complex rules of agreement. Others are very simple.
English nouns only vary between singular and plural, and even pronouns and irregular verbs
like to be and to have usually have no more than a handful of specific forms. Some languages
(mostly not spoken in Europe) are not thought of as having any inflectional morphological
variation at all.

Just because a word has been inflected does not mean it is a different word. In English, dog and
dogs are not different words just because of the -s added to indicate the plural. For each surface
form, there is a base word that it refers to, independently of its morphology. This underlying
abstraction is called its lemma, from a word the ancient Greeks used to indicate the “substance”
of a word. Sometimes, it is called the canonical form of a word, and indicates the spelling you
would find in a dictionary (see Section 4, “Lexical resources”).

One source of ambiguity that lemmatizers and morphological analyzers may be expected to
resolve is that a particular token may be an inflected form of more than one lemma. In English,

Linguistic tools

84

for example, the word tear can refer to the noun meaning “a secretion of water from someone's
eyes”, or to the verb that means “to pull something apart”, among other possible meanings.
Seen in isolation, tear and tears could refer to either, but tearing usually can only refer to a
verb. Most – pratically all – languages have similar cases, i.e. German die Schale meaning
either the bowl (singular) or the scarves (plural). Disambiguation can involve many sorts of
information other than just the forms of the words, and may use complex statistical information
and machine learning. Many annotated corpora systematically disambiguate lemmas as part of
their mark-up.

Inflectional morphology in European languages most often means changing the endings of
words, either by adding to them or by modifying them in some way, but it can involve changing
any part of a word. In English, some verbs are inflected by changing one or more of their vowels,
like break, broke, and broken. In German many common verbs – called the strong verbs – are
inflected by changing the middle of the word. In Arabic and Hebrew, all nouns and verbs and
many other words are inflected by inserting, deleting, and changing the vowels in the middle of
the word. In the Bantu languages of Africa, words are inflected by adding prefixes and changing
the beginnings of words. Other languages indicate inflection by inserting whole syllables in the
middle of words, repeating parts of words, or almost any other imaginable variation. Many
languages use more than one way of doing inflection.

4.4.2. Derivational morphology
Derivational morphology is the process of making a word from another word, usually changing
its form while also changing its meaning or grammatical function in some way. This can mean
adding prefixes or suffixes to words, like the way English constructs the noun happiness and the
adverb unhappily from the adjective happy. These kinds of processes are often used to change
the part-of-speech or syntactic functions of words – making a verb out of a noun, or an adjective
out of an adverb, etc. But sometimes they are used only to change the meaning of a word, like
adding the prefix un- in both English and German, which may negate or invert the meaning of
a word in some way but does not change its grammatical properties or part-of-speech.

As with inflectional morphology, languages may use almost any kind of variation to derive new
words from old ones, not just prefixes and suffixes. There is no simple, fixed line to separate
derivational morphology from inflectional morphology, and individual linguists will sometimes
disagree about how to categorize individual word formation processes. A few will disagree
about whether there is any meaningful distinction between inflection and derivation at all.

One common derivational process found in many different languages is to make compound
words. German famously creates very long words this way, and English has many compound
constructs that are sometimes written as one word, or with a hyphen, or as separate words that
people understand to have a single common meaning. The opposite process – splitting a single
word into multiple parts – also exists in some languages. Phrasal verbs in English and separable
verbs in German are two examples (see Section 4.2, “Tokenizers”), and a morphological
analyzer may have to identify those constructions and handle them appropriately.

4.4.3. Stemmers
One of the oldest and simplest tools for computational morphological analysis is the stemmer.
The term stem refers to the part of a word that is left over when inflectional and derivational
prefixes and suffixes have been stripped from a word, and the parts of words left when a
compound word has been split into its parts. Many words share a common “stem” like the
German words sehen, absehen, absehbar and Sehhilfe, which all share the stem seh. This stem
usually reflects a common meaning.

Linguistic tools

85

The ability to reduce groups of similar words to a common form corresponding to a
common meaning made stemmers attractive for information retrieval applications. Stemmers
are algorithmitically very simple and typically use a catalog of regular expressions – simple
patterns of letters – for identifying and stripping inflectional and derivative elements. They
are not very linguistically sophisticated, and miss many kinds of morphological variation.
Whenever possible, more sophisticated tools should be used.

However, stemmers are relatively easy to make for new languages and are often used when
better tools are unavailable. The Porter stemmer is the classical easy-to-implement algorithm
for stemming [Porter 1980].

4.4.4. Lemmatizers
Lemmatizers are programs that take tokenized texts as input and return a set of lemmas
or canonical forms. They usually use a combination of rules for decomposing words and
a dictionary, sometimes along with statistical rules and machine learning to disambiguate
homonyms. Some lemmatizers also preserve some word class information, like noting that a
word ends in an -s that was removed, or an -ing – usually just enough to reconstruct the original
token, but not as much as a full morphological analysis.

Implementations of lemmatizers:

SMOR [http://wiki.ims.uni-stuttgart.de/extern/StatNLPResources]
SMOR is a stand-alone lemmatizer for German that also includes an optional
morphological analysis module (see Section 4.4.5, “Morphological analyzers”).

RACAI lemmatizer [http://www.racai.ro/]
The RACAI lemmatizer works for Romanian, English and French texts.

MorphAdorner [http://morphadorner.northwestern.edu/]
MorphAdorner is a lemmatizer for English written in the Java programming language.

4.4.5. Morphological analyzers
Full morphological analyzers take tokenized text as input and return complete information
about the inflectional categories each token belongs to, as well as their lemma. They are often
combined with PoS taggers and sometimes with syntactic parsers, because a full analysis of
the morphological category of a word usually touches on syntax and almost always involves
categorizing the word by its part-of-speech.

Some analyzers may also provide information about derivational morphology and break up
compounds into constituent parts.

High-quality morphological analyzers almost always use large databases of words and rules of
composition and decomposition. Many also employ machine learning techniques and have been
trained on manually analyzed data. Developing comprehensive morphological analyzers is very
challenging, especially if derivational phenomena are to be analyzed.

Implementations of morphological analyzers:

RFTagger [http://www.ims.uni-stuttgart.de/projekte/corplex/RFTagger/]
RFTagger assigns fine-grained part-of-speech tags based on a morphological analysis. It
works for German, Czech, Slovene, and Hungarian data, and can be trained for other
languages.

http://wiki.ims.uni-stuttgart.de/extern/StatNLPResources
http://wiki.ims.uni-stuttgart.de/extern/StatNLPResources
http://www.racai.ro/
http://www.racai.ro/
http://morphadorner.northwestern.edu/
http://morphadorner.northwestern.edu/
http://www.ims.uni-stuttgart.de/projekte/corplex/RFTagger/
http://www.ims.uni-stuttgart.de/projekte/corplex/RFTagger/

Linguistic tools

86

SMOR [http://wiki.ims.uni-stuttgart.de/extern/StatNLPResources]
Contains a morphological analyzer for German.

Morpha [http://www.informatics.sussex.ac.uk/research/groups/nlp/carroll/morph.html]
A morphological analyzer for English.

4.5. Syntax
Syntax is the study of the connections between parts of sentences. It is intended to account for
the meaningful aspects of the ordering of words and phrases in language. The principles that
determine which words and phrases are connected, how they are connected, and what effect
that has on the ordering of the parts of sentences are called a grammar.

There are many different theories of syntax and ideas about how syntax works. Individual
linguists are usually attached to particular schools of thought depending on where they were
educated, what languages and problems they work with, and to a large degree their personal
preferences.

Most theories of syntax fall into two broad categories that reflect different histories, priorities
and theories about how language works: dependency grammars and constituency grammars. The
divide between these two approaches dates back to their respective origins in the late 1950s,
and the debate between them is still active. Both schools of thought represent the connections
within sentences as trees or directed graphs, and both schools agree that representing those
connections requires that implicit structural information is made explicit. Relationships between
words cannot be trivially represented as a sequence of tokens, and designing software that
recognizes those relationships in texts is a challenging problem.

4.5.1. Dependency grammar
In dependency grammars, connections are usually between words or tokens, and the edges
that join them have labels from a small set of connection types determined by some theory
of grammar. Figure 7.2, “A dependency analysis” is a dependency analysis from a particular
dependency grammar theory.

Dependency grammars tend to be popular among people working with languages in which word
order is very flexible and words are subject to complex morphological agreement rules. It has
a very strong tradition in Eastern Europe, but is also present elsewhere to varying degrees in
different countries.

Figure 7.2. A dependency analysis

A dependency analysis of the sentence Syntactic dependencies make phrase structure redundant.
This analysis uses the Word Grammar framework and is taken from the Word Grammar website
[http://www.phon.ucl.ac.uk/home/dick/WG/WG4PG/intro.htm].

http://wiki.ims.uni-stuttgart.de/extern/StatNLPResources
http://wiki.ims.uni-stuttgart.de/extern/StatNLPResources
http://www.informatics.sussex.ac.uk/research/groups/nlp/carroll/morph.html
http://www.informatics.sussex.ac.uk/research/groups/nlp/carroll/morph.html
http://www.phon.ucl.ac.uk/home/dick/WG/WG4PG/intro.htm
http://www.phon.ucl.ac.uk/home/dick/WG/WG4PG/intro.htm

Linguistic tools

87

4.5.2. Constituency grammar
Constituency grammars view the connections between words as a hierarchal relationship
between phrases. They break sentences up into parts, usually but not always continuous ones,
and then break each part up into smaller parts, until they reach the level of individual tokens. The
trees drawn to demonstrate constituency grammars reflect this structure. Edges in constituency
grammars are not usually labeled.

Constituency grammar draws heavily on the theory of formal languages in computer science,
but tends to use formal grammar in conjunction with other notions to better account for
phenomena in human language. For example, there are prominent theories of syntax that
include formalized procedures for tree rewriting, type hierarchies and higher-order logics,
among other features. Few linguists currently believe the theory of formal languages alone can
account for syntax.

As a school of thought, constituency grammar is historically associated with the work of Noam
Chomsky and the American linguistic tradition. It tends to be popular among linguists working
in languages like English, in which morphological agreement is not very important and word
orders are relatively strictly fixed. It is very strong in English-speaking countries, but is also
present in much of western Europe and to varying degrees in other parts of the world. See
Figure 7.3, “A constituency analysis” for an example of a constituency analysis of an English
sentence.

Figure 7.3. A constituency analysis

A constituency analysis of the sentence Sincerity may frighten the boy. This analysis is taken
from [Chomsky1965].

The labels on edges in Figure 7.2, “A dependency analysis” and on tree nodes in Figure 7.3, “A
constituency analysis” form a part of the specific syntactic theories from which these examples
are drawn. Fuller explanations for them and their meanings are to be found in the referenced
texts. Specific syntactic parsers and linguistic tools may use entirely different labels based on
different ideas about language, even when the general form of the syntactic representations they
generate resemble the examples here.

4.5.3. Hybrid grammars
Among computational linguists and people working in natural language processing, there is a
growing tendency to use hybrid grammars that combine elements of both the constituency and
dependency traditions. These grammars take advantage of a property of constituency grammars

Linguistic tools

88

called headedness. In many constituency frameworks, the phrases identified by the grammar
have a single constituent that is designated as its head. A constituency analysis where all phrases
have heads, and where all edges have labels, is broadly equivalent to a dependency analysis.

Figure 7.4, “A hybrid syntactic analysis” is a tree from the TüBa-D/Z treebank of German
[http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/tuebadz.html], and its labels are
explained in [Hinrichs 2004]. This treebank uses a hybrid analysis of sentences, containing
constituents that often have heads and edges with dependency labels. As with many hybrid
analyses, not all constituents have heads, and some edges have empty labels, so it is not
completely compatible with a strict dependency framework. However, the added information
in the edges also makes it incompatible with a strict constituency framework. This kind of
syncretic approach tends to find more acceptance in corpus and computational linguistics than
in theoretical linguistics.

Figure 7.4. A hybrid syntactic analysis

A hybrid syntactic analysis of the German sentence Veruntreute die AWO Spendengeld?
Display provided by the TIGERSearch [http://www.ims.uni-stuttgart.de/projekte/TIGER/
TIGERSearch/] application [Lezius 2002].

4.5.4. Syntactic parsers
Syntactic parsing is the process (either automated or manual) of performing syntactic analysis.
A computer program that parses natural language is called a parser. Superficially, the process
of parsing natural language resembles parsing in computer science – the way a computer makes
sense of the commands users type at command lines, or enter as source code for programs – and
computing has borrowed much of its vocabulary for parsing from linguistics. But in practice,
natural language parsing is a very different undertaking.

The oldest natural language parsers were constructed using the same kinds of finite-state
grammars and recognition rules as parsing computer commands, but the diversity, complexity

http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/tuebadz.html
http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/tuebadz.html
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/

Linguistic tools

89

and ambiguity of human language makes those kinds of parsers difficult to construct and
prone to failure. The most accurate and robust parsers today incorporate statistical principles to
some degree, and have often been trained from manually parsed texts using machine learning
techniques.

Parsers usually require some preprocessing of the input text, although some are integrated
applications that perform preprocessing internally. Generally, the input to a parser must have
sentences clearly delimited and must usually be tokenized. Many common parsers work with
a PoS-tagger as a preprocessor, and the output of the PoS-tagger must use the tags expected
by the parser. When parsers are trained using machine learning, the preprocessing must match
the preprocessing used for the training data.

The output of a parser is never simply plain text – the data must be structured in a way that
encodes the connections between words that are not next to each other.

Implementations of parsers:

Berkeley parser [http://nlp.cs.berkeley.edu/]
A constituency parser for English, German and many other languages. This parser
optionally creates hybrid dependency output.

OpenNLP parser [http://opennlp.apache.org/]
A constituency parser for English.

BitPar [http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/BitPar.html]
A constituency parser for German and English.

Bohnet parser [http://code.google.com/p/mate-tools/]
A dependency parser for English, German, Spanish and Chinese that is part of the Mate
tools.

Alpino parser [http://www.let.rug.nl/vannoord/alp/Alpino/]
A hybrid parser for Dutch.

4.5.5. Chunkers
High-quality parsers are very complex programs that are very difficult to construct and may
require very powerful computers to run or may process texts very slowly. For many languages
there are no good automatic parsers at all.

Chunkers, also known as shallow parsers, are a more lightweight solution [Abney1991]. They
provide a partial and simplified constituency parse, often simply breaking sentences up into
clauses by looking for certain kinds of words that typically indicate the beginning of a phrase.
They are much simpler to write, more robust, and much less resource-intensive to run than full
parsers, and are available in many languages.

Implementations of chunkers:

RACAI chunker [http://www.racai.ro/]
A chunker for Romanian and English.

Illinois chunker [http://cogcomp.cs.illinois.edu/page/software_view/13]
A chunker for English written in the Java programming language.

http://nlp.cs.berkeley.edu/
http://nlp.cs.berkeley.edu/
http://opennlp.apache.org/
http://opennlp.apache.org/
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/BitPar.html
http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/BitPar.html
http://code.google.com/p/mate-tools/
http://code.google.com/p/mate-tools/
http://www.let.rug.nl/vannoord/alp/Alpino/
http://www.let.rug.nl/vannoord/alp/Alpino/
http://www.racai.ro/
http://www.racai.ro/
http://cogcomp.cs.illinois.edu/page/software_view/13
http://cogcomp.cs.illinois.edu/page/software_view/13

Linguistic tools

90

4.6. Word sense disambiguation (WSD)
Words can have more than one meaning. For example, the word glass can refer to a “drinking
glass” and to the “material substance glass”. People can usually figure out, given the context of
a word, which of a word's many meanings are intended, but this is not so easy for a computer.
The automatic identification of the correct meaning of a word in context (sometimes called its
sense) is called word-sense disambiguation (WSD).

Automatic WSD usually uses a combination of a digitized dictionary – a database of words
and possible meanings – and information about the contexts in which words are likely to take
particular meanings. Programs that do this often employ machine learning techniques and
training corpora. Inputs to WSD programs are usually tokenized texts, but sometimes PoS
tagging and even parsing may be required before disambiguation.

An implementation of a WSD tool:

UKB [http://ixa2.si.ehu.es/ukb/]
A graph based WSD and word sense similarity toolkit for English.

4.7. Coreference resolution and anaphora
Coreferences occur when two or more expressions refer to the same thing. Usually, linguists
talk about coreferences only in those cases where the syntactic and morphological rules of the
language do not make it clear that those expressions necessarily refer to the same thing. Instead,
speakers have to use their memory of what has already been said, and their knowledge of the
real world context of communication, to determine which words refer to the same thing and
which ones do not.

An anaphoric expression is a particular case of coreference that can be resolved by identifying
a previous expression that refers to the same thing. For example, in the sentence The car stalled
and it never started again the word it refers to the car. But in the sentence The car hit a truck
and it never started again it is not clear whether it refers to the car or the truck. In the sentences
John was out with Dave when he saw Mary. He thought Mary saw him, but she ignored him
completely. it is not clear whether any instance of he and him refers to John or Dave.

These kinds of ambiguities are what coreference resolution addresses. They can be very
important in many NLP applications, like information retrieval and machine translation. Few
automatic tools exist to resolve these kinds of problems and most use some form of machine
learning.

Implementations for coreference resolution are:

BART (Beautiful Anaphora Resolution Toolkit) [http://www.bart-coref.org/]
A machine learning tool for coreference resolution. Currently supports English, Italian and
German but may be trainable for other languages.

Stuttgart Coreference Resolver [http://www.bart-coref.org/]
A coreference resolver designed for the CoNLL 2012 coreference shared task [http://
conll.cemantix.org/2012/call-for-participation.html].

4.8. Named entity recognition (NER)
Named entities are a generalization of the idea of a proper noun. They refer to names of
people, places, brand names, non-generic things, and sometimes to highly subject-specific

http://ixa2.si.ehu.es/ukb/
http://ixa2.si.ehu.es/ukb/
http://www.bart-coref.org/
http://www.bart-coref.org/
http://www.bart-coref.org/
http://www.bart-coref.org/
http://conll.cemantix.org/2012/call-for-participation.html
http://conll.cemantix.org/2012/call-for-participation.html
http://conll.cemantix.org/2012/call-for-participation.html

Linguistic tools

91

terms, among many other possibilities. There is no fixed limit to what constitutes a named
entity, but these kinds of highly specific usages form a large share of the words in texts that are
not in dictionaries and not correctly recognized by linguistic tools. They can be very important
for information retrieval, machine translation, topic identification and many other tasks in
computational linguistics.

NER tools can be based on rules, on statistical methods and machine learning algorithms, or
on combinations of those methods. The rules they apply are sometimes very ad hoc – like
looking for sequences of two or more capitalized words – and do not generally follow from
any organized linguistic theory. Large databases of names of people, places and things often
form a part of an NER tool.

NER tools sometimes also try to classify the elements they find. Determining whether a
particular phrase refers to a person, a place, a company name or other things can be important
for research or further processing.

A special application of NER is geovisualization – the identification of place names and their
locations. Knowing that a named entity refers to a particular place can make it much easier
for computers to disambiguate other references. A reference to Bismarck near a reference to a
place in Germany likely refers to the 19th century German politician Otto von Bismarck, but
near a reference to North Dakota, it likely refers to the small American city of Bismarck.

Implementations of NER tools:

German NER [http://www.nlpado.de/~sebastian/software/ner_german.shtml]

A NER tool for German based on the Stanford Named Entity Recognizer.

Stanford NER [http://nlp.stanford.edu/software/corenlp.shtml]
A NER tool for English distributed as part of the Stanford Core NLP toolkit.

SemiNER [http://www.lsv.uni-saarland.de/personalPages/gchrupala/seminer.html]
A NER tool for German trained from large corpora and Wikipedia data.

4.9. Sentence and word aligners
Aligners are tools mostly used with bilingual corpora – two corpora in different languages where
one is a translation of the other, or both are translations from a single source. Statistical machine
translation programs use aligned corpora to learn how to translate one language into another.

Alignments can be at different levels. Sentence aligners match the sentences in the two corpora,
while word aligners try to align individual words. These programs are usually statistical in
nature, and are typically language independent.

Implementations of aligners:

GIZA++ [http://code.google.com/p/giza-pp/]
A word-level aligner designed to work for all language pairs.

Gargantua [http://gargantua.sourceforge.net/]
A sentence-level aligner designed to work for all language pairs, that works well when the
two texts are not sentence-for-sentence translations.

http://www.nlpado.de/~sebastian/software/ner_german.shtml
http://www.nlpado.de/~sebastian/software/ner_german.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://www.lsv.uni-saarland.de/personalPages/gchrupala/seminer.html
http://www.lsv.uni-saarland.de/personalPages/gchrupala/seminer.html
http://code.google.com/p/giza-pp/
http://code.google.com/p/giza-pp/
http://gargantua.sourceforge.net/
http://gargantua.sourceforge.net/

Linguistic tools

92

5. Manual annotation and analysis tools
Automatic annotation is not the end goal of most computational linguistics – linguistic tools
are used to construct new resources and do linguistic research. Manual annotation and analysis
tools touch on topics that have little place in automatic annotation technology: Visualization,
usability, and human factors in linguistic analysis.

5.1. Manual annotation tools
The earliest linguistic corpora were annotated by adding information to the raw text manually.
Human annotation is still performed, sometimes to correct imperfect automatic annotation
software, and sometimes because no adequate automatic software exists. Human-corrected
annotation, which is presumed to have fewer errors than automatic annotation, is used to create
gold standard corpora, which are very important for creating, training and evaluating automatic
annotation tools. See Chapter 5, Quality assurance , but see also Section 2, “Automatic and
manual analysis tools”.

Annotating corpora manually is slow work and one of the roles of linguistic tools is making
that task easier.

Manual annotation tools may involve one or more levels of analysis. Many specialized tools
are oriented towards particular kinds of annotation and research corpora, while others are very
general and applicable to many different linguistic theories and kinds of analysis.

Implementations of manual annotation tools:

Annotate [http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/annotate.html]
Annotate is a corpus annotation tool that is freely available for research purposes. It allows
linguists to annotate the syntactic structure of sentences either manually or with the help
of external tools like taggers and parsers, and see the results in an easy-to-read format
on screen. Annotated corpora are stored in a sharable relational database and there is a
permissions control scheme for users, granting them individual read and/or write access to
each project. Multiple corpora can be hosted in a single Annotate installation.

Annotate works with input encoded in several versions of the NeGra corpus [http://
www.coli.uni-saarland.de/projects/sfb378/negra-corpus/] format. Annotation tags can be
specified for different levels of analysis, i.e. morphological tags, PoS tags, syntactic tags,
etc.

SALTO [http://www.coli.uni-saarland.de/projects/salsa/page.php?id=software]
SALTO is a graphical tool for manual annotation of treebanks. It has been designed to
work with syntactic trees and frame semantics annotation, but has also proven useful for
other kinds of annotation.

Data is imported into SALTO in either the TIGER XML format or in its own SALSA XML
format [Erk/Pado 2004]. Nevertheless as the TIGERSearch-related tool TIGERRegistry
can convert a number of different treebank formats into TIGER XML, this makes it
possible to use many different input sources. The output format is SALSA XML, an
extension to TIGER XML. The added annotations can not be displayed or edited by TIGER
tools.

http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/annotate.html
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/annotate.html
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
http://www.coli.uni-saarland.de/projects/salsa/page.php?id=software
http://www.coli.uni-saarland.de/projects/salsa/page.php?id=software

Linguistic tools

93

5.2. Annotated corpus access tools
Searching and retrieving the contents of annotated corpora is one of the major supports that
linguistic tools bring to general linguistic research. Relatively few specialized tools exist for
this purpose, and many linguists use simple text tools like grep [Bell1979] to do research.
Nonetheless, a number of applications are available for search and retrieval specifically with
annotated language data.

Implementations of an annotated corpus access tools:

TIGERSearch [http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/]
TIGERSearch is a particularly widely used application for searching in treebanks. Users
can import existing corpora into TIGERSearch and then query them using a lightweight
search language developed specifically for TIGERSearch.

The results of queries are displayed visually and can be easily inspected. Matching patterns
are clearly highlighted, so very small structures are quickly identified even in large trees.
Results can be exported either as images (JPG, TIF, SVG, etc.) or as XML files. The
statistics export module can be used to compute the frequency distribution for specific
constructs in the query.

TIGERSearch uses the TIGER-XML format to encode corpora, but import filters are
available for other popular formats such as Penn Treebank, NeGra, Susanne, among others.

ANNIS2 [http://www.sfb632.uni-potsdam.de/d1/annis/]
ANNIS2 is a versatile web browser-based search and visualization architecture for complex
multilevel linguistic corpora with diverse types of annotation.

DDC-Concordance [http://www.ddc-concordance.org/]
DDC-Concordance is a tool for searching corpora with and without morphological markup.
It is cross-lingual, but lemma searching is limited to English, German and Russian. Client
APIs are available for Perl, Python, C and PHP.

Corpus Query Processor (CQP) [http://cwb.sourceforge.net/]
CQP is a query engine for annotated corpora. It supports a range of annotation types and
queries, including regular expressions and matches over words that are not next to each
other, along with functions for marshalling results for convenient viewing.

6. Multimedia tools
Multimedia tools cover a wide variety of programs – mostly not specialized for linguistics –
used to store, annotate, search and edit video and audio data. We will discuss only a few tools
designed for use in linguistics:

Elan [http://www.lat-mpi.eu/tools/elan/]
ELAN is a tool for the creation of complex annotations in video and audio resources.
With ELAN, a user can add an unlimited number of free-form annotations to audio and/
or video data. An annotation can be, for instance, a sentence, word or morpheme, or a
gloss, a comment, a translation, or a tag or description of any feature observed in the
media. Annotations can be created on multiple layers, called tiers, that can be hierarchically
interconnected and can correspond to different levels of linguistic analysis. Users can also
mark and annotate gestures.

http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/
http://www.sfb632.uni-potsdam.de/d1/annis/
http://www.sfb632.uni-potsdam.de/d1/annis/
http://www.ddc-concordance.org/
http://www.ddc-concordance.org/
http://cwb.sourceforge.net/
http://cwb.sourceforge.net/
http://www.lat-mpi.eu/tools/elan/
http://www.lat-mpi.eu/tools/elan/

Linguistic tools

94

The annotation is always created and stored in files which are separate from the multi-media
files. The textual content of annotations is always represented in Unicode and the annotation
files are in an Elan-specific XML format. Annotation can be imported from and exported
to a variety of other formats, including Shoebox/Toolbox, CHAT, Transcriber (import
only), Praat and comma or tab-delimited text files. Export is also possible to interlinear
text, HTML, SMIL and subtitle text.

Lexus [http://www.lat-mpi.eu/tools/lexus]
Lexus is a web-based tool for creating and editing multimedia lexical databases. A
lexical entry in Lexus can describe different linguistic aspects of a word, like its part-of-
speech, along with dictionary-style information like examples, as well as encyclopedic and
ethnographic information. In Lexus, lexical entries can also contain images, sounds, and
video files, to illustrate meanings or as an example of the usage of the word.

Lexus-built lexica make it possible to link linguistic and cultural concepts together in a way
which conventional electronic language resources cannot easily manage. In addition, Lexus
supports structural linguistic dependencies between words at all levels of analysis.

Lexus is of primary interest for language documentation projects since it offers the
possibility to not just create a digital dictionary or thesaurus, but an entire multimedia
encyclopedic lexicon. It also supports working collaboratively from different locations
through a web-based interface.

WaveSurfer [http://www.speech.kth.se/wavesurfer/]
WaveSurfer is a tool for manually annotating sound files. It provides different visualizations
of audio data – waveform or spectrogram display – and enables pitch contour and formant
calculation and visualization. It supports different file formats for import and export,
including WAVES or TIMIT. It is also possible to specify a tagset for annotation labels.
Tagsets are saved in human readable form, and can be manually modified with a simple
text editor. Annotation labels can be queried and replayed to the user.

WaveSurfer does not support hierarchical annotations. Also, no automatic transcriptions
are provided, but results of automatic transcription processes in one of the supported
formats can be imported and manipulated by the tool.

EXMARaLDA [http://www.exmaralda.org/]
EXMARaLDA (Extensible Markup Language for Discourse Annotation) is a system of
data formats and tools for the computer assisted transcription and annotation of spoken
language, and for the construction and analysis of spoken language corpora.

The EXMARaLDA Partitur Editor is a tool for inputting, editing and outputting
transcriptions in partitur (musical score) notation. The EXMARaLDA Corpus-Manager
is designed to assemble transcripts created with the EXMARaLDA Partiture-Editor with
their corresponding recordings into corpora and enrich them with metadata. Metadata can
be about speakers, communications (settings), recordings and the actual transcripts. The
EXMARaLDA query tool EXAKT (EXMARaLDA Analysis and Concordancing Tool) is
a tool for searching transcribed and annotated phenomena in an EXMARaLDA corpus.

All EXMARaLDA data is stored in Unicode-compliant XML files. EXMARaLDA data
can be transformed into a number of widely used presentation formats and supports several
important transcription systems (HIAT, GAT, CHAT, DIDA).

WebMAUS [https://webapp.phonetik.uni-muenchen.de/BASWebServices/]
The CLARIN-D center at the Bavarian Archive for speech Signals (BAS) [http://
www.bas.uni-muenchen.de/Bas/] has made available several new web services that

http://www.lat-mpi.eu/tools/lexus
http://www.lat-mpi.eu/tools/lexus
http://www.speech.kth.se/wavesurfer/
http://www.speech.kth.se/wavesurfer/
http://www.exmaralda.org/
http://www.exmaralda.org/
https://webapp.phonetik.uni-muenchen.de/BASWebServices/
https://webapp.phonetik.uni-muenchen.de/BASWebServices/
http://www.bas.uni-muenchen.de/Bas/
http://www.bas.uni-muenchen.de/Bas/
http://www.bas.uni-muenchen.de/Bas/

Linguistic tools

95

incorporate the functionality of the MAUS (Munich AUtomatic Segmentation System)
[http://www.phonetik.uni-muenchen.de/Bas/BasProjectseng.html#MAUS] segmentation
tool. MAUS allows the fully automatic segmentation of speech recordings, given some form
of written transcript. In a nutshell MAUS transforms the written text into a sequence of
canonical phonemes, then produces a hypothesis model of possible pronunciation variants
based on this canonical form, and finally decodes the speech signal into the most likely
variant together with the optimal segmentation into phonemic and word units.

MAUS was developed in the late 1990s and has been maintained by BAS since then. To
make it easier to use, several web services are now available that allow scientists to use
MAUS over the Internet without the hassle of installation.

7. Recommendations for CLARIN-D tool
designers

CLARIN-D provides an infrastructure for distributing linguistic resources, including tools
for annotation, visualization and creation of language data. For tool owners and developers
interested in taking advantage of CLARIN-D's infrastructure, there are some important
recommendations to follow:

• For tools in the form of a downloadable and executable application, providing a compact
delivery format, installation instructions and documentation is very strongly recommended.
Contact the CLARIN-D technical help desk [http://de.clarin.eu/en/training-helpdesk/
technical-helpdesk.html] for assistance in the process.

• For tools in the form of web-services, the functions and data structures that the tool uses
should be clearly documented.

• All tools should be made available via a CLARIN-D center or, if they are hosted elsewhere,
have accurate metadata available to CLARIN-D (see Chapter 2, Metadata).

http://www.phonetik.uni-muenchen.de/Bas/BasProjectseng.html#MAUS
http://www.phonetik.uni-muenchen.de/Bas/BasProjectseng.html#MAUS
http://de.clarin.eu/en/training-helpdesk/technical-helpdesk.html
http://de.clarin.eu/en/training-helpdesk/technical-helpdesk.html
http://de.clarin.eu/en/training-helpdesk/technical-helpdesk.html

96

Chapter 8. Web services: Accessing
and using linguistic tools

Thomas Zastrow, Kathrin Beck, Scott Martens, Universität
Tübingen

The previous chapter discusses the diversity of linguistic tools, a consequence of the diversity
of human languages and linguistic theories, as well as their hierarchal interdependency. This
chapter discusses web services and how they are used to organize complex systems of linguistic
tools in a way that makes them as accessible as possible to users. The WebLicht system, a
service-oriented architecture and execution environment for linguistic research built and hosted
by CLARIN-D, has been designed make this interdependent system of resources available
through standard Internet browsers with a minimum of user training and technical knowledge.

1. Web Services
Web services are a response to a number of problems that have emerged in the development of
computers and in the way people use computers. Computers were, initially, a very expensive
and rare tool used only for highly specialized, mostly scientific applications. Now, they are the
core tool of almost all academic and intellectual work. In much of the world, owning a computer
or smartphone with access to the Internet is something most literate people can take for granted.
This change in computer users and uses forced the developers of computer tools to change their
practices many times, and web services are a recent iteration of this process of adaptation.

The first computers, built in the 1940s and early 1950s, could only run one program at a time,
were not interconnected, and had very little ability to store information for long periods of time.
Individual users entered the programs and data they wanted a computer to process from stored
media – punch cards and later disks and tapes – and then waited for the computer to complete
the program and output the result on paper, cards, disks, or some other media.

From very early on, computer engineers looked at ways to save users time and trouble and
improve the efficiency of computers. Beginning in the mid-1950s, IBM sold hard drives so that
data could be stored internally in computers and accessed when wanted. Data no longer had to
be inputted each time users wanted to do something, and output could be directed to the same
internal storage for further processing and analysis.

In the early 1960s, engineers began connecting computers so they could exchange data, first as
part of the US air defense system and then in the SABRE air travel reservation system. And,
starting in the mid-1960s, computers started to support multiple users at the same time, each
with their own screen and keyboard, running different processes on different data on the same
computer without interfering with each other.

As computers became more widespread, more powerful, and were expected to perform more
complex and demanding tasks, this networked multi-user model replaced the older picture of
computers as a single isolated machine with a single user. Each user had an individual screen and
keyboard, but used them to access any number of powerful computers, which could be located
anywhere from the next room to thousands of kilometres away, tied together by sophisticated
computer-to-computer connections. By 1970, this model had evolved into the earliest form of
the Internet and the first versions of the still widespread Unix operating system.

Web services: Accessing
and using linguistic tools

97

Networked, multi-user computers created a number of new practical problems: When a
networked computers store and run different programs that depend on each other, they need to
have common ways of communicating and structuring data so that they can interact correctly.
And, large networks with many users require security systems to control access. Many of the
particularities of Unix-style operating systems were implemented to address those problems,
and the standards for computer communication and data interchange on the Internet target
precisely those issues.

The introduction of personal computers in the 1980s in some ways represented a step
backwards in computer engineering: Home and office computers were once again isolated from
each other, usually lacking any internal storage, and only able to run one process at a time,
directed by a single user who would have to wait for processes to finish. Developing software
for these widespread desktop computers meant confronting all over again many of the problems
that standard protocols and interfaces were originally developed to solve.

In addition, the desktop computer revolution introduced a whole new problem to computer
engineering: Personal computer users are usually not technical experts and often have little or no
access to technical experts. Installing, running and maintaining software on personal computers
can be very challenging even for experts and this inhibited the release of complex software.

In the 1990s, desktop computers became much more powerful and were increasingly networked
and connected to the Internet, but the solutions that had been developed for high-performance
computers were not so easy to reimplement for desktop computers. High-performance
computer systems have professional administrators to maintain them, and until roughly 1990,
nearly all Internet-accessible computers were owned by governments, military contractors, big
companies, and universities. New standards and solutions could be implemented quickly by a
combination of bureaucratic directives and professional agreement among system operators.
System administrators operated as an informal guild, in constant communication with each
other over the Interent, documenting and distributing highly specific knowledge about problems
and solutions often before computer vendors were even aware of them. For personal computers,
this approach was impossible. Users are not computer professionals and cannot be exepcted to
be constantly on top of the latest highly specialized technical knowledge.

Web services are one, partial solution to these problems. The Internet is built on a set of stable,
mature protocols for computer-to-computer interaction. Any computer that connects to the
Internet, by definition, supports those common protocols. The Internet has, therefore, become
a reliable mechanism of providing services to practically all computers.

A web service is any computational service that is provided via the Internet using a standard
interface, accessible to different applications and computing platforms. To use a web service,
a computer needs to only support the standard Internet protocols. Providing a web service
means never having to distribute a tool or other resource at all. The service itself is hosted on a
server under the provider's control, and does not need to ever be ported or adapted to different
environments.

Web services resolve a number of the problems highlighted above:

• No special software to install other than the ones already needed to access the Internet.

• Fewer problems with system compatibility, since programs are written to run on distant
servers under the control of developers.

• Bypassing the limitations of desktop computers that lack memory or storage space.

Web services: Accessing
and using linguistic tools

98

These benefits, along with widespread high-speed Internet access, have made web services an
increasingly preferred solution to the problem of making digital resources and tools available
to diverse users.

2. Service-oriented architectures
A service-oriented architecture (SOA) is a system that brings together web services to provide
a single system, offering users a single interface to multiple interoperable tools. It is not simply
a program or a server but a way of finding, fitting together and presenting to users web services
and tools. It is an entire system of data standards, interfaces and practices.

Service-oriented architectures have a number of common features that are generally present:

• Multiple services are orchestrated at runtime, when users request them.

• Services are not coupled together in a rigid, pre-determined way.

• Services are discoverable when users want to employ them.

• Services are indexed in an accessible registry.

• Services have standardized interfaces, so that they can interoperate and exchange data.

• Services are reusable in different environments.

• Services are distributed, running on different servers, connected by the Internet or other
networking scheme.

• Users have access to all services supported by the architecture through a single documented
programming interface, and a single, widely supported front end like a web browser.

3. WebLicht – A service-oriented
architecture for linguistic resources and
tools

WebLicht (Web-based Linguistic Chaining Tool) [https://weblicht.sfs.uni-tuebingen.de/] is a
web application built on service-oriented architecture principles that offers users access to
linguistic resources. It incorporates a variety of new technologies to provide a single, user-
friendly interface to a growing collection of tools and corpora. WebLicht is accesible from
any Internet-connected computer with a recent web browser. Figure 8.1, “ The WebLicht user
interface, displayed in a browser” is a screenshot of the WebLicht user interface, displayed
in an ordinary web browser. No special software needs to be installed on user's computers
and WebLicht has no particular system requirements beyond those of standard web browser
software.

WebLicht services can also be accessed directly from user-created and third party applications
that support the required protocols, although at present there are no such applications. This is
one of the principles of web service development and service-oriented architectures.

This section will describe the WebLicht system and its functioning.

https://weblicht.sfs.uni-tuebingen.de/
https://weblicht.sfs.uni-tuebingen.de/

Web services: Accessing
and using linguistic tools

99

Figure 8.1. The WebLicht user interface, displayed in a browser

3.1. Tool chains
WebLicht is organized around the notion of a tool chain, a succession of tools which

• work in a sequence on the same data,

• take the output of the preceding tool as their input,

• add information to these input data in a cumulative way, and

• do not alter either the primary data nor the data which were added by preceding tools.

Many linguistic tools perform specific and well-defined tasks, and for any particular task,
there may be a variety of tools that do the same task but differ in underlying algorithm, basis
in linguistic theory, or target language. The hierarchal nature of linguistic processing (see
Chapter 7, Linguistic tools) means many tools rely on lower level tools to function. The “chain of
tools” concept follows from this situation, and WebLicht offers users a robust and user-friendly
way to assemble these small tools into processes.

For example, to parse a corpus, the user first uploads a corpus using their browser or selects a
corpus already stored by WebLicht, if necessary selecting a format converter as the first tool
in the processing chain to import it into the TCF format used internally by WebLicht (see
Section 3.2, “Interoperability and the Text Corpus Format”). Currently, WebLicht provides
format coverters for plain text, RTF and Microsoft Word input.

From the menu, users then select tools one after another, organizing them into a processing
chain that performs the required steps to parse the corpus: Tokenizing, then lemmatizing,
performing part-of-speech tagging, morphological analysis, and parsing. WebLicht verifies that
the input requirements for each tool are satisfied by the previous tools in the chain. For example,
it ensures that the tagset used for part-of-speech tagging matches the tag set required as input for
a parser. WebLicht's internal processing format guarantees that the ouput of each tool requires
no additional formal conversion to be compatible with the next tool in the chain. For additional

Web services: Accessing
and using linguistic tools

100

examples of using WebLicht and constructing tool chains, see Section 4, “WebLicht usage
scenarios”.

Processes can be very long and complex and take time to run. WebLicht provides computing
resources to complete the task, without reducing the user's ability to perform other tasks on
their computer.

For various reasons, some tools cannot be combined. Many tools have specific input
requirements that other tools do not meet, for example a parser may require a particular part-of-
speech tagset, and no alternative tagger program will do. Also, many combinations of tools may
not make any sense, like combining a named entity recognizer with a word sense disambiguation
tool. WebLicht ensures that users can only build chains where the input requirements for each
tool are satisfied by the output of the previous ones in the chain. As long as the input and output
requirements of each service are being met, WebLicht can combine services from different
research groups, hosted and running on different servers, into one robust tool chain.

3.2. Interoperability and the Text Corpus Format
In order for tools provided through WebLicht to exchange data, they must share a common data
format. To make sure that all tools are interoperable, WebLicht has implemented a common
interchange format for digitized texts: the Text Corpus Format (TCF, [Heid et al. 2010]).
Although oriented originally to written language data, TCF has been extended to other media
and is intended to provide interoperability between linguistic tools of all types.

TCF is similar in purpose and broadly compatible with LAF and GrAF (see Section 2,
“Exchange and combination of annotations”), but more narrowly designed for use in a web-
based service oriented architecture. Because TCF only provides layers for supported tools, and
the LAF and GrAF formats are open-ended formats that support arbitrary kinds of annotations,
there is not necessarily complete interoperability between these data formats. Conversion may
not be lossless, and tools for converting specific annotations are only available where a converter
for those specific kinds of annotations has been provided.

Before WebLicht can process linguistic data, it must be encoded in TCF. WebLicht is
developing converters for many common linguistic data formats, both for input into WebLicht
and to allow users to export their data to exchange formats common in the corpus linguistics
community. The CLARIN-D consoritum, and the resource centres in particular, will offer help
and can provide standard converters for many commonly used data formats. As more and more
tools and resources are integrated into WebLicht, more conversion tools will be available to
tool providers.

TCF is used exclusively as internal processing format designed to support efficient data sharing
and web service execution. Using TCF ensures interoperability between WebLicht tools and
resources. It is strongly recommended that all tools in WebLicht accept input and produce
output in TCF format.

TCF is an XML-based stand-off format (see Section 1.1, “Inline vs. stand-off annotations”).
Annotations are added to linguistic data by appending new sections to already present TCF-
encoded data. Whenever a new layer of annotation is introduced into WebLicht, it is encoded
as a new layer independent of the existing layers. Using WebLicht to annotate TCF-encoded
materials never changes or erases the original data or information added by previous tools in a
chain, it only adds new information which further processing can use or ignore.

TCF's multi-layered stand-off annotation ensures that TCF and WebLicht are independent from
specific linguistic theories. There are no assumptions about the linguistic theories underlying

Web services: Accessing
and using linguistic tools

101

the data or the annotations added to it. It is equally compatible with all approaches to language,
so long as the tools and resources are formally compatible with WebLicht.

Furthermore, TCF's layering model makes it very easy for tool providers to specify which kinds
of annotations are a pre-requisite for a specific tools. For example, if a parser requires texts
to be PoS tagged using the Penn Treebank format – a common requirement of several English
syntactic parsers – WebLicht can check if a section providing PoS annotations in that format
is present in the given TCF file.

3.3. Visualization
For many annotation layers, WebLicht offers visualization tools. These tools are available to
tool designers and users automatically if their tools output annotations in a compatible TCF
layer. They do not have to develop their own visualization schemes.

Figure 8.2, “WebLicht constituency parse visualization” is a screenshot of WebLicht displaying
a constituency parse tree from a syntactical annotation layer in a TCF file.

Figure 8.2. WebLicht constituency parse visualization

3.4. Metadata
Through WebLicht, the CLARIN-D resource centres provide users with information about
available services, including details about input requirements and output specifications of
each tool. This information is stored as metadata, and every tool integrated into WebLicht
must be accompanied by appropriately structured metadata. CMDI metadata descriptions for
WebLicht tools must be made available and stored at one of the CLARIN-D data repositories
(see Section 6, “The Component Metadata Initiative (CMDI)”). Tool providers must produce
such metadata. The CLARIN-D resource centres offer support and assistance in providing this
information and correctly formatting it.

Every web service must also be assigned an individual persistent identifier (PID). PIDs can come
from any existing PID assignment system, but they must be unique. Tool providers can also ask
for support from a CLARIN-D resource centre in obtaining a PID.

3.5. Security
WebLicht is accessible via the Shibboleth SSO system (see Section 1, “Single Sign-on access to
the CLARIN-D infrastructure”). This guarantees that every member of an academic institution
which is part of the CLARIN identity federation, can access WebLicht using her institutional

Web services: Accessing
and using linguistic tools

102

account. Furthermore, the SSO infrastructure assures that only members of the academic
community can access WebLicht and its web services.

4. WebLicht usage scenarios
The WebLicht infrastructure can be used in many different contexts and the use cases described
here by no means exhaust the possibilities for use. The purpose of WebLicht is to provide
easy access to linguistic tools and a realtively simple means for developers to distribute their
linguistic tools. In any circumstance where a ready-made linguistic tool could be deployed,
WebLicht is at least in principle available.

4.1. Quick annotation
WebLicht provides a platform for quickly and reliably annotating arbitrary texts using standard
tools. This is a boon for classroom use and for any kind of linguistic research, since it makes
full annotation available quickly with little or no preprocessing and no tool preparation.

The example below describes the quick construction of a lemmatized and PoS tagged resource
from an arbitrary short text. This task requires no software installation beyond a standard
Internet browser, and takes minutes to demonstrate and perform. Tool processing time varies,
depending on the tool itself.

1. Find a short text on the Internet.

Figure 8.3. A short text from a news website

Web services: Accessing
and using linguistic tools

103

2. Open WebLicht in a browser, and select from the menu: File → New → text/plain.

Figure 8.4. WebLicht start-up

3. Copy the text from the article and paste it into the window, select the language of the text
and other options as appropriate, then click the Save button.

Web services: Accessing
and using linguistic tools

104

Figure 8.5. Inputing a short text

4. The next step is to construct a tool chain. Available tools are always in the upper window,
labeled Next Choices. Tools can be added to a chain by double-clicking them, or by dragging
them from the upper window to the lower (labeled Current Tool Chain).

Web services: Accessing
and using linguistic tools

105

Figure 8.6. Constructing a tool chain

5. Most text processing tools require conversion into TCF format, so first select the text to
TCF converter.

Web services: Accessing
and using linguistic tools

106

Figure 8.7. Adding a TCF converter to a tool chain

6. The Next Choices window now contains tools that can be chained after the TCF converter.
Select the tools that will need to run to produce the desired annotated resource. For example,
select in sequence the SfS Tokenizer/Sentence Splitter, then the IMS TreeTagger. This
produces a valid, complete annotation chain.

Web services: Accessing
and using linguistic tools

107

Figure 8.8. Adding a tokenizer, sentence splitter, lemmatizer and tagger
to a tool chain

7. Click Run Tools. Processing time depends on the underlying tools and the facilities available
to run them. WebLicht displays the current state of the text in processing chain and signals
when it has finished running.

Web services: Accessing
and using linguistic tools

108

Figure 8.9. Running the tool chain on the text

8. WebLicht has facilities for visualizing the output of the processing chain directly. Click the
visualization icon on the last element of the chain to inspect the results.

Web services: Accessing
and using linguistic tools

109

Figure 8.10. Visualization

9. Click the download icon on the last member of the chain after processing is completed to
download the TCF file produced at the end of the processing chain. This file is in XML
format with distinct and well-documented tags encompassing all the information produced
by the tools in the chain. Further processing and analysis can be performed from this file.

Web services: Accessing
and using linguistic tools

110

Figure 8.11. Downloading the results

10.(optional) WebLicht also includes parsers and other common linguistic tools, some of which
take a much longer time to run. To fully parse the text, all that is necessary is to add a parser
tool to the end of the tool chain and wait for it to finish running.

Web services: Accessing
and using linguistic tools

111

Figure 8.12. Adding a parser to the tool chain

4.2. Statistics
WebLicht is also able to incorporate facilities for doing statistical analysis as part of the tool
chain. All that is required is to add an analysis tool to the chain. For example, the tool chain
from the previous section can include a lemma count tool.

1. Add the Lemma Frequency Tool to a processing chain that includes a lemmatizer.

Web services: Accessing
and using linguistic tools

112

Figure 8.13. Adding a lemma frequency tool to the chain

2. Once processing is completed, the ordered list of lemmas and frequencies is available for
viewing and downloading.

Web services: Accessing
and using linguistic tools

113

Figure 8.14. Viewing word frequency data in a table

WebLicht also has tools for extracting PoS distributions, displaying histograms and other
statisticals visualizations, and a variety of statistical analysis tools in progress.

4.3. Geovisualization
Another application for WebLicht is data transformation for more complex visualization.
Geovisualization extracts placenames from annotated texts and displays them on a map.
Figure 8.15, “Viewing placenames from a text on a map” is an example of a geovisualization
from a German newspaper article, processed in a few seconds using WebLicht.

Web services: Accessing
and using linguistic tools

114

Figure 8.15. Viewing placenames from a text on a map

5. Integrating existing linguistic tools
into WebLicht

This section is addressed to tool providers who want to integrate their tools into WebLicht.
CLARIN-D can provide advice and assistance, time and resources permitting, through
the CLARIN-D technical help desk [http://de.clarin.eu/en/training-helpdesk/technical-
helpdesk.html] and individual centres. More detailed information about the technical
specifications for WebLicht services and tutorials for creating and WebLicht tools are available
through the WebLicht website [https://weblicht.sfs.uni-tuebingen.de/].

RESTstyle architecture

Before integration into WebLicht, linguistic tools and resources must have
a standard web service interface. Web service standards are defined by the
W3C, which considers a web service to be “a software system designed to
support interoperable machine-to-machine interaction over a network.” [http://
www.w3.org/TR/2004/NOTE-ws-gloss-20040211/]

http://de.clarin.eu/en/training-helpdesk/technical-helpdesk.html
http://de.clarin.eu/en/training-helpdesk/technical-helpdesk.html
http://de.clarin.eu/en/training-helpdesk/technical-helpdesk.html
https://weblicht.sfs.uni-tuebingen.de/
https://weblicht.sfs.uni-tuebingen.de/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

Web services: Accessing
and using linguistic tools

115

Web services can be implemented in several ways, and there are several established
standards and best practice systems. WebLicht uses the RESTstyle architecture
[Fielding 2000], which is well suited to highly scalable systems of independent
software components, like large collections of independently authored linguistic
tools. Every WebLicht-integrated tool must be implemented as RESTstyle web
service.

Rewriting linguistic tools as web services may be time-consuming, complicated,
and, in the case of tools with intellectual property restrictions, impossible.
Therefore, it is common practice to construct a wrapper around an existing tool. A
web service wrapper is a program that is implemented as a web service and invokes
the existing tool in response to users' input. The wrapper often must convert user
input from the formats provided by the web service system to the formats expected
by the tool, and then converts the output into the format expected by the web
service or the user (see Figure 8.16, “Web service wrapper”).

Figure 8.16. Web service wrapper

There are no fixed limitations on the programming languages used for WebLicht
tools. The only strict technical requirements for WebLicht integration are

1. interfaces that follow the requirements for a RESTful architecture, and

2. metadata descriptions in the CMDI format (see Section 6, “The Component
Metadata Initiative (CMDI)”).

Although not as strictly required, it is very strongly preferred that all web
services available through WebLicht employ the TCF format described in section
Section 3.2, “Interoperability and the Text Corpus Format”. Devising a wrapper
for a new tool should generally mean devising a robust data converter between TCF
and that tool's usual processing format.

Generally, tool integration into WebLicht can be accomplished using any
programming language and software development framework. The Java
EE programming environment [http://www.oracle.com/technetwork/java/javaee/
overview/index.html] (particularly version 6 and above) and the Apache Tomcat
web application server [http://tomcat.apache.org/] are good best practices for
building web services for WebLicht.

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

Web services: Accessing
and using linguistic tools

116

Checklist for WebLicht integration

The following steps have to be performed in order to successfully integrate a tool
or resource into WebLicht:

• Implement the tool as RESTstyle web service or embed it in a wrapper which
acts as RESTstyle web service and make it accessible via standard internet
protocols.

• Tools that process textual information should use the TCF format for input and
output whenever possible.

• Describe the web service in the CMDI metadata format and assign a PID to
it. Examples of CMDI files can be found at any CLARIN-D repository which
hosts web services.

• The CMDI file has to be stored at one of the CLARIN-D centre repositories.

• Decide whether you want to host your tool or web service at your site or
whether you want to draw on the hosting facilities of CLARIN-D. Creator-
hosted resources can still be part of WebLicht, as long as server availability
is high and the hosting system is able to handle a sufficiently large number of
simultaneous calls.

117

Bibliography
[Abney1991] Steven Abney. 1991. Parsing by chunks. Principle-based parsing. Kluwer Academic

Publishers.

[Artstein/Poesio 2008] Ron Artstein and Massimo Poesio. 2008. “Inter-coder agreement for computational
linguistics”. Computational Linguistics. 34. 4.

[Beagrie 2001] Neil Beagrie. 2001. Preserving UK digital library collections [http://dx.doi.org/10.1108/
EUM0000000006955]. Program: electronic library and information systems. 35. 3. 215-226.

[Beißwenger et al. 2012] Michael Beißwenger, Maria Ermakova, Alexander Geyken, Lothar Lemnitzer,
and Angelika Storrer. to appear. “A TEI Schema for the Representation of Computer-mediated
Communication”. Journal of the TEI. 3.

[Bell Labs 1979] . 1979. UNIX™ time-sharing system. UNIX programmer’s manual [http://plan9.bell-
labs.com/7thEdMan/]. 7th edition.

[Bies et al. 1995] Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIntyre. Bracketing Guidelines
for Treebank II Style Penn Treebank Project. 1995.

[Boyd et al. 2008] Adriane Boyd, Markus Dickinson, and Detmar Meurers. 2008. “On detecting errors in
dependency treebanks”. Research on Language and Computation. 6. 2. 113-137.

[Brants et al. 2002] Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. 2002. The TIGER Treebank [http://www.coli.uni-saarland.de/publikationen/softcopies/
Brants:2002:TT.pdf].

[Burchardt et al. 2006] A. Burchardt, K. Erk, A. Frank, A. Kowalski, and S. Pado. 2006. SALTO – a
versatile multi-level annotation tool. Proceedings of LREC'2006, Genoa (IT).

[Chiarcos 2008] Christian Chiarcos. 2008. An ontology of linguistic annotations. LDV Forum (=Journal
for Computational Linguistics and Language Technology). 23. . 1-16.

[Chiarcos 2010] Christian Chiarcos. 2010. Grounding an ontology of linguistic annotations in the Data
Category Registry. Proceedings of the LREC'2010 workshop on language resource and language
technology standards. State of the art, emerging needs, and future developments. Valetta (MT).
37-40.

[Chomsky1965] Noam Chomsky. 1965. Aspects of the theory of syntax. The MIT Press.

[Collins 1997] Michael Collins. 1997. Three generative, lexicalised models for statistical parsing.
Proceedings of the 35th annual meeting of the Association for Computational Linguistics (jointly
with the 8th conference of the EACL). 16-23.

[Compston1919] Herbert Fuller Bright Compston. The inscription on the stele of Méša, commonly called
the Moabite Stone. 1919. Society for Promoting Christian Knowledge.

[Coward/Grimes 2000] David F. Coward and Charles E. Grimes. 2000. Making dictionaries. A
guide to lexicography and the Multi-Dictionary Formatter [http://www.sil.org/computing/shoebox/
MDF_2000.pdf].

[Dipper 2005] Stefanie Dipper. 2005. XML-based stand-off representation and exploitation of multi-level
linguistic annotation. Proceedings of Berliner XML Tage 2005 (BXML 2005). Berlin (DE). 39-50.

http://dx.doi.org/10.1108/EUM0000000006955
http://dx.doi.org/10.1108/EUM0000000006955
http://dx.doi.org/10.1108/EUM0000000006955
http://plan9.bell-labs.com/7thEdMan/
http://plan9.bell-labs.com/7thEdMan/
http://plan9.bell-labs.com/7thEdMan/
http://www.coli.uni-saarland.de/publikationen/softcopies/Brants:2002:TT.pdf
http://www.coli.uni-saarland.de/publikationen/softcopies/Brants:2002:TT.pdf
http://www.coli.uni-saarland.de/publikationen/softcopies/Brants:2002:TT.pdf
http://www.sil.org/computing/shoebox/MDF_2000.pdf
http://www.sil.org/computing/shoebox/MDF_2000.pdf
http://www.sil.org/computing/shoebox/MDF_2000.pdf
http://www.sil.org/computing/shoebox/MDF_2000.pdf

Bibliography

118

[Engelberg/Lemnitzer 2009] Stefan Engelberg and Lothar Lemnitzer. 2010. Lexikographie und
Wörterbuchbenutzung. 4th edition. Stauffenburg. Tübingen.

[Erk et al. 2003] Katrin Erk, Andrea Kowalski, Sebastian Pado, and Manfred Pinkal. 2003. Towards
a resource for lexical semantics. A large German corpus with extensive semantic annotation.
Proceedings of ACL 2003. Sapporo (JP). 537–544.

[Erk/Pado 2004] Katrin Erk and Sebastian Pado. 2004. A powerful and versatile XML format for
representing role-semantic annotation. Proceedings of LREC 2004.

[Fellbaum 1998] Christiane Fellbaum. 1998. WordNet. An electronic lexical database. MIT Press.
Cambridge, MA.

[Fielding 2000] Roy Thomas Fielding . 2000. Architectural styles and the design
of network-based software architectures [http://www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf]. University of California (dissertation). Irvine.

[Fischer 2005] Steven R. Fisher. 2005. Reaktion Books. A history of writing.

[Furrer/Volk 2011] Lenz Furrer and Martin Volk. 2011. “http://aclweb.org/anthology-new/W/W11/
W11-4115.pdfReducing OCR errors in Gothic script documents”. 97-103. Proceedings of
Workshop on Language Technologies for Digital Humanities and Cultural Heritage (associated with
RANLP 2011), Hissar, Bulgaria.

[Garside et al. 1997] Roger Garside, Geoffrey Leech, and Anthony McEnery. 1997. Corpus annotation.
Linguistic information from computer text corpora. Addison Wesley Longman.

[Geyken 2007] Alexander Geyken. “The DWDS corpus. A reference corpus for the German language of
the 20th century”. 2007. Christiane Fellbaum. Collocations and Idioms. Linguistic, lexicographic,
and computational aspects. Continuum. London. 23–41.

[Geyken et al. 2011] Alexander Geyken, Susanne Haaf, Bryan Jurish, Matthias Schulz, Christian
Thomas, and Frank Wiegand. 2012. “TEI und Textkorpora: Fehlerklassifikation und
Qualitätskontrolle vor, während und nach der Texterfassung im Deutschen Textarchiv [http://
www.computerphilologie.de/jg09/geykenetal.pdf]”. Jahrbuch für Computerphilologie. 9.

[Geyken et al. 2012] Alexander Geyken, Susanne Haaf, and Frank Wiegand. 2012. “The DTA ‘base
format’: A TEI-Subset for the Compilation of Interoperable Corpora [http://www.oegai.at/
konvens2012/proceedings.pdf#page=383]”. Jeremy Jancsary. 11th Conference on Natural
Language Processing (KONVENS) – Empirical Methods in Natural Language Processing,
Proceedings of the Conference. Schriftenreihe der Österreichischen Gesellschaft für Artificial
Intelligence. 5.

[Grosso et al. 2003] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh. 2003. XPointer
Framework. W3C recommendation [http://www.w3.org/TR/xptr-framework/].

[König et al. 2003] Esther König, Wolfgang Lezius, and Holger Voormann. 2003. TIGERSearch 2.1 user's
manual [http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/pdf/manual.pdf] .
IMS (Universität Stuttgart).

[Haaf et al. forthcoming] Susanne Haaf, Frank Wiegand, and Alexander Geyken. “Measuring the
correctness of double-keying. Error classification and quality control in a large corpus of TEI-
annotated historical text”. forthcoming. Journal of the Text Encoding Initiative.

[Heid et al. 2010] Ulrich Heid, Helmut Schmid, Kerstin Eckart, and Erhard Hinrichs. 2010. A corpus
representation format for linguistic web services: the D-SPIN text corpus format and its relationship

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://aclweb.org/anthology-new/W/W11/W11-4115.pdf
http://aclweb.org/anthology-new/W/W11/W11-4115.pdf
http://www.computerphilologie.de/jg09/geykenetal.pdf
http://www.computerphilologie.de/jg09/geykenetal.pdf
http://www.computerphilologie.de/jg09/geykenetal.pdf
http://www.computerphilologie.de/jg09/geykenetal.pdf
http://www.oegai.at/konvens2012/proceedings.pdf#page=383
http://www.oegai.at/konvens2012/proceedings.pdf#page=383
http://www.oegai.at/konvens2012/proceedings.pdf#page=383
http://www.oegai.at/konvens2012/proceedings.pdf#page=383
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/pdf/manual.pdf
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/pdf/manual.pdf
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/doc/pdf/manual.pdf

Bibliography

119

with ISO standards. Proceedings of the Seventh International Conference on Language Resources
and Evaluation (LREC'10).

[Hinrichs 2004] E. Hinrichs, S. Kübler, K. Naumann, H. Telljohann, and J. Trushkina. 2004. Recent
Developments in Linguistic Annotations of the TüBa-D/Z Treebank.. Proceedings of the Third
Workshop on Treebanks and Linguistic Theories (TLT)..

[Hinrichs/Vogel 2010] Erhard Hinrichs and Iris Vogel. 2010. Interoperability and standards [http://
hdl.handle.net/1839/00-DOCS.CLARIN.EU-51] . CLARIN D5C-3.

[Holley 2009] Rose Holley. “How good can it get? Analysing and improving OCR accuracy in large
scale historic newspaper digitisation programs [doi:10.1045/march2009-holley]”. 2009. D-Lib
Magazine. 14. 3/4.

[Ide 1998] Nancy M. Ide. Corpus encoding standard. SGML guidelines for encoding linguistic corpora.
1998. 463-470. Proceedings of the First International Language Resources and Evaluation
Conference, Granada, Spain.

[Ide et al. 2000] Nancy M. Ide, Patrice Bonhomme, and Laurent Romary. “XCES: An XML-based
standard for linguistic corpora”. 2000. 825-830. Proceedings of the Second language Resources and
Evaluation Conferene (LREC), Athens, 2000. European Language Resources Association (ELRA).

[Ide/Suderman 2007] N. Ide and K. Suderman. 2007. GrAF: A graph-based format for linguistic
annotations. Proceedings of the linguistic annotation workshop, held in conjunction with ACL 2007.
Praha (CZ). 1-8.

[IPA 1999] Handbook of the International Phonetic Association. A guide to the use of the international
phonetic alphabet. 1999. Cambridge University Press.

[ISO 639-3:2007] . 2007. Codes for the representation of names of languages – Part 3: Alpha-3
code for comprehensive coverage of languages [http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=39534].

[ISO 3166-1:2006] . 2006. Codes for the representation of names of countries and their subdivisions –
Part 1: Country codes [http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?
csnumber=39719].

[ISO 3166-2:2007] . 2002. Codes for the representation of names of countries and their
subdivisions – Part 2: Country subdivision code [http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=39718].

[ISO 12620:2009] . 2009. Terminology and other content and language resources – Specification of
data categories and management of a Data Category Registry for language resources [http://
www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37243].

[ISO 24610-1:2006] . 2006. Language resource management – Feature structures – Part 1: Feature
structure representation [http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?
csnumber=37324].

[ISO 24612:2012] . 2012. Language resource management – Linguistic annotation framework (LAF)
[http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326].

[ISO 24613:2008] . 2008. Language resource management – Lexical markup framework (LMF) [http://
www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37327].

http://hdl.handle.net/1839/00-DOCS.CLARIN.EU-51
http://hdl.handle.net/1839/00-DOCS.CLARIN.EU-51
http://hdl.handle.net/1839/00-DOCS.CLARIN.EU-51
doi:10.1045/march2009-holley
doi:10.1045/march2009-holley
doi:10.1045/march2009-holley
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39534
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39534
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39534
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39534
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39719
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39719
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39719
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39719
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39718
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39718
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39718
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39718
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37243
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37243
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37243
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37243
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37324
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37324
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37324
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37324
http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326
http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37327
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37327
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37327

Bibliography

120

[ISO 24615:2010] . 2010. Language resource management – Syntactic annotation framework (SynAF)
[http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37329].

[Jurafsky/Martin 2009] Dan Jurafsky and James Martin. 2009. Speech and language processing. Prentice
Hall. 2nd edition.

[Kahn/Wilensky 2006] Robert Kahn and Robert Wilensky. 2006. A framework for distributed digital object
services. International Journal on Digital Libraries. 6. 2. 115-123.

[Kunze/Lemnitzer 2007] Claudia Kunze and Lothar Lemnitzer. 2007. Computerlexikographie. Eine
Einführung. Narr. Tübingen.

[Kupietz et al. 2010] Marc Kupietz, Cyril Belica, Holger Keibel, and Andreas Witt. 2010. “The
German Reference Corpus DEREKO. A primordial sample for linguistic research [http://
www.lrec-conf.org/proceedings/lrec2010/pdf/414_Paper.pdf]”. 1848-1854. Proceedings of the
seventh conference on International Language Resources and Evaluation (LREC 2010). European
Language Resources Association (ELRA).

[Leech 1993] 1993. Geoffrey Leech. Corpus annotation schemes. Literary and Linguistic Computing. 8.
4. 275-281.

[Lemnitzer/Zinsmeister 2010] Lothar Lemnitzer and Heike Zinsmeister. 2010. Korpuslinguistik. Eine
Einführung. Narr. Tübingen. 2.

[Lieberman et al. 2005] Henry Lieberman, Alexander Faaborg, Waseem Daher, and José Espinosa. 2005.
How to wreck a nice beach you sing calm incense. Proceedings of the International Conference on
Intelligent User Interfaces (IUI 2005).

[Lezius 2002] Wolfgang Lezius. 2002. Ein Suchwerkzeug für syntaktisch annotierte Textkorpora. University
of Stuttgart Arbeitspapiere des Instituts für Maschinelle Sprachverarbeitung (AIMS).

[Lezius 2002] Wolfgang Lezius. 2002. TIGERSearch – ein Suchwerkzeug für Baumbanken. Proceedings
of Konvens 2002. Saarbrücken (DE).

[Lüdeling/Kytö 2009] Anke Lüdeling and Merja Kytö. 2009. Corpus Linguistics. An International
Handbook. 2. de Gruyter. Berlin/New York. Handbooks of Linguistics and Communication
Science/Handbücher zur Sprach- und Kommunikationswissenschaft. 29.2.

[Lüngen/Sperberg-McQueen 2012] Harald Lüngen and Michael Sperberg-McQueen. A TEI P5 document
grammar for the IDS text model. 2012. Journal of the Text Encoding Initiative. 3.

[MacWhinney 2000] Brian MacWhinney. 2000. The CHILDES project. Tools for analyzing talk. Part 1: The
CHAT transcription format [http://childes.psy.cmu.edu/manuals/CHAT.pdf]. 3rd edition (newer
editions available online). Lawrence Erlbaum Associates. Mahwah, NJ.

[Magerman 1994] David M. Magerman. 1994. Natural language parsing as statistical pattern recognition.
Doctoral dissertation.

[Martens 2011] Scott Martens. 2011. Quantifying linguistic regularity. Centrum voor Computerlinguïstiek,
KU Leuven.

[McEnery/Wilson 2001] Tony McEnery and Andrew Wilson. 2001. Corpus linguistics. An introduction.
Edinburgh university press. Edinburgh. 2nd edition. Edinburgh textbooks in empirical linguistics.

[Nartker et al. 2003] Thomas A. Nartker, Kazem Taghva, Ron Young, Julie Borsack, and Allen Condit.
2003. “OCR correction based on document level knowledge [http://citeseer.ist.psu.edu/viewdoc/

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37329
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=37329
http://www.lrec-conf.org/proceedings/lrec2010/pdf/414_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/414_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/414_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/414_Paper.pdf
http://childes.psy.cmu.edu/manuals/CHAT.pdf
http://childes.psy.cmu.edu/manuals/CHAT.pdf
http://childes.psy.cmu.edu/manuals/CHAT.pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.74.4701&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.74.4701&rep=rep1&type=pdf

Bibliography

121

download?doi=10.1.1.74.4701&rep=rep1&type=pdf]”. 103-110. Proc. IS&T/SPIE 2003 Intl.
Symp. on Electronic Imaging Science and Technology.

[NISO:2004] Understanding Metadata [http://www.niso.org/publications/press/
UnderstandingMetadata.pdf]. . 2004.

[Odijk/Toral 2009] Jan Odijk and Antonio Toral. 2009. Existing evaluation and validation of LRs [http://
www.flarenet.eu/sites/default/files/D5.1.pdf] . FlaReNet D5.1.

[Perkuhn et al. 2012] Rainer Perkuhn, Holger Keibel, and Marc Kupietz. 2012. Korpuslinguistik. Fink.
Paderborn.

[Porter 1980] Martin F. Porter. 1980. An algorithm for suffix stripping. Program. 14. 3. 130-137.

[Przepiórkowski 2011] Adam Przepiórkowski. 2011. Integration of language resources into web service
infrastructure [http://hdl.handle.net/1839/00-DOCS.CLARIN.EU-56] . CLARIN D5R-3b.

[Pytlik Zillig 2009] Brian L. Pytlik Zillig. “TEI analytics. Converting documents into a TEI format
for cross-collection text analysis [http://llc.oxfordjournals.org/content/24/2/187.full]”. 2009.
187-192. Literary & Linguistic Computing. 24. 2.

[Riester et al. 2010] Arndt Riester, David Lorenz, and Nina Seemann. 2010. A recursive annotation scheme
for referential information status. Proceedings of the 7th International Conference of Language
Resources and Evaluation (LREC). Valletta (MT). 717-722.

[Ringersma/Drude/Kemp-Snijders 2010] 2010. J. Ringersma, S. Drude, and M. Kemps-Snijders. Lexicon
standards: From de facto standard Toolbox MDF to ISO standard LMF.. Talk presented at LRT
standards workshop, Seventh conference on International Language Resources and Evaluation
(LREC'2010).

[Romary et al. 2011] Laurent Romary, Amir Zeldes, and Florian Zipser. 2011. <tiger2/> documentation
[http://hal.inria.fr/docs/00/59/59/13/PDF/tiger2_documentation_20100525.pdf]. Draft version
as of May 25, 2011.

[Russel/Norvig 2009] Stuart Russell and Peter Norvig. 2009. Artificial intelligence. A modern approach.
Prentice Hall.

[Saenger 1997] Paul Saenger. 1997. Stanford University Press. Space between words: the origins of silent
reading.

[Santorini 1990] Beatrice Santorini. 1990. Part-of-speech tagging guidelines for the Penn Treebank project
[http://repository.upenn.edu/cis_reports/570/]. 3rd revision.

[Schiller et al. 1999] Anne Schiller, Simone Teufel, Christine Stöckert, and Christine Thielen. 1999.
Guidelines für das Tagging deutscher Textcorpora mit STTS (Kleines und großes Tagset) [http://
www.sfs.uni-tuebingen.de/resources/stts-1999.pdf].

[Schmandt-Besserat 1992] Denise Schmandt-Besserat. 1992. University of Texas Press. Before writing.

[Sinclair 1991] John McHardy Sinclair. Corpus, concordance, collocation. 1991. Oxford University Press.
Describing English language.

[Sinclair 2005] John Sinclair. 2005. Corpus and text – basic principles. Martin Wynne. Developing linguistic
corpora. A guide to good practice. 1–16. Oxbow Books. Oxford.

http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.74.4701&rep=rep1&type=pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.flarenet.eu/sites/default/files/D5.1.pdf
http://www.flarenet.eu/sites/default/files/D5.1.pdf
http://www.flarenet.eu/sites/default/files/D5.1.pdf
http://hdl.handle.net/1839/00-DOCS.CLARIN.EU-56
http://hdl.handle.net/1839/00-DOCS.CLARIN.EU-56
http://hdl.handle.net/1839/00-DOCS.CLARIN.EU-56
http://llc.oxfordjournals.org/content/24/2/187.full
http://llc.oxfordjournals.org/content/24/2/187.full
http://llc.oxfordjournals.org/content/24/2/187.full
http://hal.inria.fr/docs/00/59/59/13/PDF/tiger2_documentation_20100525.pdf
http://hal.inria.fr/docs/00/59/59/13/PDF/tiger2_documentation_20100525.pdf
http://repository.upenn.edu/cis_reports/570/
http://repository.upenn.edu/cis_reports/570/
http://www.sfs.uni-tuebingen.de/resources/stts-1999.pdf
http://www.sfs.uni-tuebingen.de/resources/stts-1999.pdf
http://www.sfs.uni-tuebingen.de/resources/stts-1999.pdf

Bibliography

122

[Soria/Monacchini 2008] Claudia Soria and Monica Monacchini. 2008. Kyoto-LMF WordNet
representation format (version 4) [http://www2.let.vu.nl/twiki/pub/Kyoto/TechnicalPapers/Kyoto-
LMF_v04.pdf]. KYOTO working paper WP2/TR2.

[Svensen 2009] Bo Svensen. 2009. A handbook of lexicography. The theory and practice of dictionary-
making. Cambridge University Press. Cambridge (UK).

[Tanner et al. 2009] Simon Tanner, Trevor Muñoz, and Pich Hemy Ros. “Measuring mass text digitization
quality and usefulness. Lessons learned from assessing the OCR accuracy of the British Library’s
19th century online newspaper archive [doi:10.1045/july2009-munoz]”. 2009. D-Lib Magazine.
15. 7/8.

[TEI P5] , Lou Bournard, and Syd Bauman. TEI P5: Guidelines for electronic text encoding and interchange
[http://www.tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf] .

[Thompson/McKelvie 1997] H. S. Thompson and D. McKelvie. 1997. Hyperlink semantics for standoff
markup of read-only documents [http://www.ltg.ed.ac.uk/~ht/sgmleu97.html]. Proceedings of
SGML Europe’97. Barcelona (ES).

[Unsworth 2011] John Unsworth. “Computational work with very large text collections. Interoperability,
sustainability, and the TEI [http://jtei.revues.org/215]”. 2011. Journal of the Text Encoding
Initiative . 1.

[Windhouwer 2012] Menzo Windhouwer. 2012. RELcat: a Relation Registry for ISOcat data categories
[http://www.lrec-conf.org/proceedings/lrec2012/summaries/954.html]. Proceedings of the Eight
International Conference on Language Resources and Evaluation (LREC'12). European Language
Resources Association (ELRA).

[Yamada/Matsumoto 2003] Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency analysis
with support vector machines. Proceedings of IWPT 3.

[Zipser/Romary 2010] Florian Zipser and Laurent Romary. 2010. A model oriented approach to the
mapping of annotation formats using standards. Proceedings of the Workshop on Language
Resource and Language Technology Standards (LREC'2010). Malta (MT).

[Zinsmeister et al. 2008] Heike Zinsmeister, Andreas Witt, Sandra Kübler, and Erhard Hinrichs. 2008.
Linguistically annotated corpora. Quality assurance, reusability and sustainability. Anke Lüdeling
and Merja Kytö. Corpus linguistics. An international handbook. 1. 759-776. Mouton de Gruyter.
Berlin. Handbücher zur Sprach- und Kommunikationswissenschaft.

[Zinsmeister 2010] Heike Zinsmeister. 2010. Korpora. K.-U. Carstensen, Ch. Ebert, C. Ebert, S. Jekat, R.
Klabunde, and H. Langer. Computerlinguistik und Sprachtechnologie. Eine Einführung. 3rd edition.
482-491. Spektrum Akademischer Verlag. Heidelberg.

http://www2.let.vu.nl/twiki/pub/Kyoto/TechnicalPapers/Kyoto-LMF_v04.pdf
http://www2.let.vu.nl/twiki/pub/Kyoto/TechnicalPapers/Kyoto-LMF_v04.pdf
http://www2.let.vu.nl/twiki/pub/Kyoto/TechnicalPapers/Kyoto-LMF_v04.pdf
http://www2.let.vu.nl/twiki/pub/Kyoto/TechnicalPapers/Kyoto-LMF_v04.pdf
doi:10.1045/july2009-munoz
doi:10.1045/july2009-munoz
doi:10.1045/july2009-munoz
doi:10.1045/july2009-munoz
http://www.tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf
http://www.tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf
http://www.ltg.ed.ac.uk/~ht/sgmleu97.html
http://www.ltg.ed.ac.uk/~ht/sgmleu97.html
http://www.ltg.ed.ac.uk/~ht/sgmleu97.html
http://jtei.revues.org/215
http://jtei.revues.org/215
http://jtei.revues.org/215
http://www.lrec-conf.org/proceedings/lrec2012/summaries/954.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/954.html

	CLARIN-D User Guide
	Table of Contents
	Introduction and background
	1. About this book
	2. Who should read this book?
	3. How to use this book
	4. Release history

	Part I. Basic concepts
	Chapter 1. Concepts and data categories
	1. Data Categories and Data Category Registries
	2. ISOcat, a Data Category Registry
	2.1. Data categories in ISOcat
	2.2. Data category types: simple, complex and container DCs
	2.3. Specifying a data category: administrative, descriptive and linguistic part
	2.4. Ways how to use the ISOcat data category registry
	2.5. RELcat, a relation registry

	Chapter 2. Metadata
	1. Managing and Accessing Data
	2. Objects, Collections, Granularity
	3. Types of Resources and Metadata Components
	4. Lifecycle Management
	5. Existing MD sets
	5.1. Dublin Core Metadata Initiative (DCMI)
	5.2. ISLE Metadata Initiative
	5.3. Open Language Archive Community (OLAC)
	5.4. CHAT
	5.5. Text Encoding Initiative (TEI)
	5.6. Component Metadata Initiative (CMDI)

	6. The Component Metadata Initiative (CMDI)
	6.1. What is it?
	6.2. Why yet another metadata format?
	6.3. The CMDI model
	6.4. Explicit semantics
	6.5. Procedure
	6.6. Profile and component adaptation
	6.7. Preferred components and profiles
	6.8. Converting existing metadata to CMDI

	7. Aggregation
	7.1. Metadata Harvesting
	7.2. Metadata gathering and searching: the Virtual Language Observatory (VLO)

	8. Recommendations

	Chapter 3. Resource annotations
	1. Aspects of annotations
	1.1. Inline vs. stand-off annotations
	1.2. Multi-layer annotation
	1.3. Relations between annotation types

	2. Exchange and combination of annotations
	2.1. Representing and exchanging complete annotations: getting independent of a specific representation format
	2.1.1. LAF – the Linguistic Annotation Framework
	2.1.2. GrAF – a graph-based XML-serialization for LAF
	2.1.3. The 3-layer-framework of representations to include, process and exchange

	2.2. Introduction and monitoring of data categories: relating specific tagsets
	2.3. Handling different concepts: issues in transferring annotation schemes

	3. Recommendations

	Chapter 4. Access to resources and tools – technical and legal issues
	1. Single Sign-on access to the CLARIN-D infrastructure
	1.1. Gaining access to a resource
	1.2. Granting access to a resources
	1.3. Technical details of the single sign-on infrastructure

	2. Legal Issues

	Chapter 5. Quality assurance
	1. Aspects of the quality of resources
	1.1. Well-formedness and schema compliance
	1.2. Adequacy and consistency
	1.3. Metadata

	2. Recommendations

	Part II. Linguistic resources and tools
	Chapter 6. Types of resources
	1. General recommendations
	2. Text Corpora
	2.1. Background
	2.1.1. Corpus typology
	2.1.2. Corpus compilation
	Capturing data from non-digital sources
	Capturing data from digital sources

	2.1.3. Corpus quality and quality control

	2.2. Text format
	2.3. Metadata
	2.4. Summary and Recommendations

	3. Multimodal corpora
	3.1. Examples of possible modes within corpora
	3.2. Some background on audiovisual data formats
	3.3. Recommendations
	3.3.1. General recommendations
	3.3.2. Practical recommendations given the current state of technology

	4. Lexical resources
	4.1. Introduction
	4.2. Common formats
	4.2.1. Text encoding initative
	4.2.2. Lexical markup format
	4.2.3. WordNet and similar resources
	4.2.4. Toolbox/MDF

	4.3. Formats endorsed by CLARIN-D

	Chapter 7. Linguistic tools
	1. Hierarchies of linguistic tools
	2. Automatic and manual analysis tools
	3. Technical issues in linguistic tool management
	4. Automatic segmentation and annotation tools
	4.1. Sentence splitters
	4.2. Tokenizers
	4.3. Part-of-speech taggers
	4.4. Morphological analyzers and lemmatizers
	4.4.1. Inflectional morphology
	4.4.2. Derivational morphology
	4.4.3. Stemmers
	4.4.4. Lemmatizers
	4.4.5. Morphological analyzers

	4.5. Syntax
	4.5.1. Dependency grammar
	4.5.2. Constituency grammar
	4.5.3. Hybrid grammars
	4.5.4. Syntactic parsers
	4.5.5. Chunkers

	4.6. Word sense disambiguation (WSD)
	4.7. Coreference resolution and anaphora
	4.8. Named entity recognition (NER)
	4.9. Sentence and word aligners

	5. Manual annotation and analysis tools
	5.1. Manual annotation tools
	5.2. Annotated corpus access tools

	6. Multimedia tools
	7. Recommendations for CLARIN-D tool designers

	Chapter 8. Web services: Accessing and using linguistic tools
	1. Web Services
	2. Service-oriented architectures
	3. WebLicht – A service-oriented architecture for linguistic resources and tools
	3.1. Tool chains
	3.2. Interoperability and the Text Corpus Format
	3.3. Visualization
	3.4. Metadata
	3.5. Security

	4. WebLicht usage scenarios
	4.1. Quick annotation
	4.2. Statistics
	4.3. Geovisualization

	5. Integrating existing linguistic tools into WebLicht

	Bibliography

